Computational models for predicting drug responses in cancer research

被引:126
作者
Azuaje, Francisco [1 ]
机构
[1] LIH, Dept Oncol, NorLux Neurooncol Lab, L-1526 Luxembourg, Luxembourg
关键词
drug sensitivity; computational prediction models; cancer; translational bioinformatics; precision medicine; CELL-LINES; SENSITIVITY; IDENTIFICATION; HETEROGENEITY; DEPENDENCY; RESISTANCE; DISCOVERY; RELEVANCE; RESOURCE; GENETICS;
D O I
10.1093/bib/bbw065
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The computational prediction of drug responses based on the analysis of multiple types of genome-wide molecular data is vital for accomplishing the promise of precision medicine in oncology. This will benefit cancer patients by matching their tumor characteristics to the most effective therapy available. As larger and more diverse layers of patient-related data become available, further demands for new bioinformatics approaches and expertise will arise. This article reviews key strategies, resources and techniques for the prediction of drug sensitivity in cell lines and patient-derived samples. It discusses major advances and challenges associated with the different model development steps. This review highlights major trends in this area, and will assist researchers in the assessment of recent progress and in the selection of approaches to emerging applications in oncology.
引用
收藏
页码:820 / 829
页数:10
相关论文
共 78 条
[1]   Genetics: Big hopes for big data [J].
Adams, Jill U. .
NATURE, 2015, 527 (7578) :S108-S109
[2]   Gene expression profile alone is inadequate in predicting complete response in multiple myeloma [J].
Amin, S. B. ;
Yip, W-K ;
Minvielle, S. ;
Broyl, A. ;
Li, Y. ;
Hanlon, B. ;
Swanson, D. ;
Shah, P. K. ;
Moreau, P. ;
van der Holt, B. ;
van Duin, M. ;
Magrangeas, F. ;
Sonneveld, P. Pieter ;
Anderson, K. C. ;
Li, C. ;
Avet-Loiseau, H. ;
Munshi, N. C. .
LEUKEMIA, 2014, 28 (11) :2229-2234
[3]   Building the foundation for genomics in precision medicine [J].
Aronson, Samuel J. ;
Rehm, Heidi L. .
NATURE, 2015, 526 (7573) :336-342
[4]   Development of biomarker classifiers from high-dimensional data [J].
Baek, Songjoon ;
Tsai, Chen-An ;
Chen, James J. .
BRIEFINGS IN BIOINFORMATICS, 2009, 10 (05) :537-546
[5]   Assessing the accuracy of prediction algorithms for classification: an overview [J].
Baldi, P ;
Brunak, S ;
Chauvin, Y ;
Andersen, CAF ;
Nielsen, H .
BIOINFORMATICS, 2000, 16 (05) :412-424
[6]   A community computational challenge to predict the activity of pairs of compounds [J].
Bansal, Mukesh ;
Yang, Jichen ;
Karan, Charles ;
Menden, Michael P. ;
Costello, James C. ;
Tang, Hao ;
Xiao, Guanghua ;
Li, Yajuan ;
Allen, Jeffrey ;
Zhong, Rui ;
Chen, Beibei ;
Kim, Minsoo ;
Wang, Tao ;
Heiser, Laura M. ;
Realubit, Ronald ;
Mattioli, Michela ;
Alvarez, Mariano J. ;
Shen, Yao ;
Gallahan, Daniel ;
Singer, Dinah ;
Saez-Rodriguez, Julio ;
Xie, Yang ;
Stolovitzky, Gustavo ;
Califano, Andrea ;
Abbuehl, Jean-Paul ;
Altman, Russ B. ;
Balcome, Shawn ;
Bell, Ana ;
Bender, Andreas ;
Berger, Bonnie ;
Bernard, Jonathan ;
Bieberich, Andrew A. ;
Borboudakis, Giorgos ;
Chan, Christina ;
Chen, Ting-Huei ;
Choi, Jaejoon ;
Coelho, Luis Pedro ;
Creighton, Chad J. ;
Dampier, Will ;
Davisson, V. Jo ;
Deshpande, Raamesh ;
Diao, Lixia ;
Di Camillo, Barbara ;
Dundar, Murat ;
Ertel, Adam ;
Goswami, Chirayu P. ;
Gottlieb, Assaf ;
Gould, Michael N. ;
Goya, Jonathan ;
Grau, Michael .
NATURE BIOTECHNOLOGY, 2014, 32 (12) :1213-+
[7]   The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity [J].
Barretina, Jordi ;
Caponigro, Giordano ;
Stransky, Nicolas ;
Venkatesan, Kavitha ;
Margolin, Adam A. ;
Kim, Sungjoon ;
Wilson, Christopher J. ;
Lehar, Joseph ;
Kryukov, Gregory V. ;
Sonkin, Dmitriy ;
Reddy, Anupama ;
Liu, Manway ;
Murray, Lauren ;
Berger, Michael F. ;
Monahan, John E. ;
Morais, Paula ;
Meltzer, Jodi ;
Korejwa, Adam ;
Jane-Valbuena, Judit ;
Mapa, Felipa A. ;
Thibault, Joseph ;
Bric-Furlong, Eva ;
Raman, Pichai ;
Shipway, Aaron ;
Engels, Ingo H. ;
Cheng, Jill ;
Yu, Guoying K. ;
Yu, Jianjun ;
Aspesi, Peter, Jr. ;
de Silva, Melanie ;
Jagtap, Kalpana ;
Jones, Michael D. ;
Wang, Li ;
Hatton, Charles ;
Palescandolo, Emanuele ;
Gupta, Supriya ;
Mahan, Scott ;
Sougnez, Carrie ;
Onofrio, Robert C. ;
Liefeld, Ted ;
MacConaill, Laura ;
Winckler, Wendy ;
Reich, Michael ;
Li, Nanxin ;
Mesirov, Jill P. ;
Gabriel, Stacey B. ;
Getz, Gad ;
Ardlie, Kristin ;
Chan, Vivien ;
Myer, Vic E. .
NATURE, 2012, 483 (7391) :603-607
[8]   AACR Cancer Progress Report 2015 [J].
Baselga, Jose ;
Bhardwaj, Nina ;
Cantley, Lewis C. ;
DeMatteo, Ronald ;
DuBois, Raymond N. ;
Foti, Margaret ;
Gapstur, Susan M. ;
Hahn, William C. ;
Helman, Lee J. ;
Jensen, Roy A. ;
Paskett, Electra D. ;
Lawrence, Theodore S. ;
Lutzker, Stuart G. ;
Szabo, Eva .
CLINICAL CANCER RESEARCH, 2015, 21 :S1-S128
[9]   An Interactive Resource to Identify Cancer Genetic and Lineage Dependencies Targeted by Small Molecules [J].
Basu, Amrita ;
Bodycombe, Nicole E. ;
Cheah, Jaime H. ;
Price, Edmund V. ;
Liu, Ke ;
Schaefer, Giannina I. ;
Ebright, Richard Y. ;
Stewart, Michelle L. ;
Ito, Daisuke ;
Wang, Stephanie ;
Bracha, Abigail L. ;
Liefeld, Ted ;
Wawer, Mathias ;
Gilbert, Joshua C. ;
Wilson, Andrew J. ;
Stransky, Nicolas ;
Kryukov, Gregory V. ;
Dancik, Vlado ;
Barretina, Jordi ;
Garraway, Levi A. ;
Hon, C. Suk-Yee ;
Munoz, Benito ;
Bittker, Joshua A. ;
Stockwell, Brent R. ;
Khabele, Dineo ;
Stern, Andrew M. ;
Clemons, Paul A. ;
Shamji, Alykhan F. ;
Schreiber, Stuart L. .
CELL, 2013, 154 (05) :1151-1161
[10]   Prediction Errors in Learning Drug Response from Gene Expression Data - Influence of Labeling, Sample Size, and Machine Learning Algorithm [J].
Bayer, Immanuel ;
Groth, Philip ;
Schneckener, Sebastian .
PLOS ONE, 2013, 8 (07)