Computation, continuation and bifurcation analysis of periodic solutions of Delay Differential Equations

被引:35
作者
Luzyanina, T [1 ]
Engelborghs, K
Lust, K
Roose, D
机构
[1] Russian Acad Sci, Inst Math Problems Biol, Moscow 142292, Russia
[2] Katholieke Univ Leuven, Dept Comp Sci, B-3001 Heverlee, Belgium
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 1997年 / 7卷 / 11期
关键词
D O I
10.1142/S0218127497001709
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a new numerical method for the efficient computation of periodic solutions of nonlinear systems of Delay Differential Equations (DDEs) with several discrete delays. This method exploits the typical spectral properties of the monodromy matrix of a DDE and allows effective computation of the dominant Floquet multipliers to determine the stability of a periodic solution. We show that the method is particularly suited to trace a branch of periodic solutions using continuation and can be used to locate bifurcation points with good accuracy.
引用
收藏
页码:2547 / 2560
页数:14
相关论文
共 34 条
[1]  
BAKER CTH, 1995, 269 U MANCH MANCH CT
[2]   HEREDITARY CONTROL PROBLEMS - NUMERICAL-METHODS BASED ON AVERAGING APPROXIMATIONS [J].
BANKS, HT ;
BURNS, JA .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1978, 16 (02) :169-208
[3]  
BELLMAN R, 1963, DIFFERNETIAL DIFFERE, V6
[4]   PERIODIC-SOLUTIONS IN A MODEL OF RECURRENT NEURAL FEEDBACK [J].
CASTELFRANCO, AM ;
STECH, HW .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1987, 47 (03) :573-588
[5]   EXISTENCE OF PERIODIC-SOLUTIONS OF AUTONOMOUS FUNCTIONAL DIFFERENTIAL EQUATIONS [J].
CHOW, SN .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1974, 15 (02) :350-378
[6]   CHARACTERISTIC MULTIPLIERS AND STABILITY OF SYMMETRIC PERIODIC-SOLUTIONS OF X(T)=G(X(T-1)) [J].
CHOW, SN ;
WALTHER, HO .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 307 (01) :127-142
[7]  
Diekmann O., 1995, DELAY EQUATIONS FUNC
[8]  
DOEDEL EJ, 1982, C NUM, V34, P225
[9]  
Driver R.D., 2012, Ordinary and delay differential equations, V20
[10]  
Elsgolts L. E., 1973, MATH SCI ENG, V105