The solution set of the N-player scalar feedback Nash algebraic Riccati equations

被引:7
作者
Engwerda, JC [1 ]
机构
[1] Tilburg Univ, Dept Econometr, NL-5000 LE Tilburg, Netherlands
关键词
algebraic Ricati equations; differential games; feedback Nash equilibrium; linear-quadratic control;
D O I
10.1109/9.895575
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we analyze the set of scalar algebraic Riccati equations (ARE) that play an important role in finding feedback Nash equilibria of the scalar N-player linear-quadratic differential game. We show that in general there exist at most 2(N) - 1 solutions of the (ARE) that give rise to a Nash equilibrium. In particular we analyze the number of equilibria as a function of the autonomous growth parameter and present both necessary and sufficient conditions for the existence of a unique solution of the ARE.
引用
收藏
页码:2363 / 2368
页数:6
相关论文
共 7 条
[1]  
Basar T., 1999, Dynamic Noncooperative Game Theory, V23
[2]   Feedback Nash equilibria in the scalar infinite horizon LQ-game [J].
Engwerda, J .
AUTOMATICA, 2000, 36 (01) :135-139
[3]   The (in)finite horizon open-loop Nash LQ game: An application to EMU [J].
Engwerda, JC ;
van Aarle, B ;
Plasmans, JEJ .
ANNALS OF OPERATIONS RESEARCH, 1999, 88 (0) :251-273
[4]   EQUILIBRIUM FEEDBACK CONTROL IN LINEAR GAMES WITH QUADRATIC COSTS [J].
LUKES, DL .
SIAM JOURNAL ON CONTROL, 1971, 9 (02) :234-&
[5]  
Shafarevich I. R., 1994, BASIC ALGEBRAIC GEOM
[6]  
Starr A. W., 1969, Journal of Optimization Theory and Applications, V3, P184, DOI 10.1007/BF00929443
[7]   Asymptotic analysis of linear feedback Nash equilibria in nonzero-sum linear-quadratic differential games [J].
Weeren, AJTM ;
Schumacher, JM ;
Engwerda, JC .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1999, 101 (03) :693-722