Isoflurane induces a protein kinase Cα-dependent increase in cell-surface protein level and activity of glutamate transporter type 3

被引:44
作者
Huang, YM [1 ]
Zuo, ZY [1 ]
机构
[1] Univ Virginia, Hlth Syst, Dept Anesthesiol, Charlottesville, VA 22908 USA
关键词
D O I
10.1124/mol.104.007443
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Glutamate transporters regulate extracellular concentrations of glutamate, an excitatory neurotransmitter in the central nervous system. We have shown that the commonly used anesthetic isoflurane increased the activity of glutamate transporter type 3 (excitatory amino acid transporter 3, EAAT3) possibly via a protein kinase C (PKC)-dependent pathway. In this study, we showed that isoflurane induced a time- and concentration-dependent redistribution of EAAT3 to the cell membrane in C6 glioma cells. This redistribution was inhibited by staurosporine, a pan PKC inhibitor, or by 12-(2-cyanoethyl)-6,7,12,13-tetrahydro-13- methyl-5-oxo-5H-indolo(2,3- a)pyrrolo(3,4- c)-carbazole (Go6976) at a concentration that selectively inhibits conventional PKC isozymes (PKC alpha, -beta, and -gamma). This isoflurane-induced EAAT3 redistribution was also blocked when the expression of PKC alpha but not PKC beta proteins was down-regulated by the respective antisense oligonucleotides. The isoflurane-induced increase of glutamate uptake by EAAT3 was abolished by the down- regulation of PKC alpha expression. Immunoprecipitation with an anti-EAAT3 antibody pulled down more PKC alpha in cells exposed to isoflurane than in control cells. Isoflurane also increased the phosphorylated EAAT3 and the redistribution of PKC alpha to the particulate fraction of cells. Consistent with the results in C6 cells, isoflurane also increased EAAT3 cell-surface expression and enhanced the association of PKC alpha with EAAT3 in rat hippocampal synaptosomes. Our results suggest that the isoflurane-induced increase in EAAT3 activity requires an increased amount of EAAT3 protein in the plasma membrane. These effects are PKC alpha-dependent and may rely on the formation of an EAAT3-PKC alpha complex. Together, these results suggest an important mechanism for the regulation of glutamate transporter functions and expand our understanding of isoflurane pharmacology at cellular and molecular levels.
引用
收藏
页码:1522 / 1533
页数:12
相关论文
共 39 条
[1]   Excitatory amino acid transporter 5, a retinal glutamate transporter coupled to a chloride conductance [J].
Arriza, JL ;
Eliasof, S ;
Kavanaugh, MP ;
Amara, SG .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (08) :4155-4160
[2]   PROTEIN-KINASE-C ISOFORM A OVEREXPRESSION IN C6 GLIOMA-CELLS AND ITS ROLE IN CELL-PROLIFERATION [J].
BALTUCH, GH ;
DOOLEY, NP ;
ROSTWOROWSKI, KM ;
VILLEMURE, JG ;
YONG, VW .
JOURNAL OF NEURO-ONCOLOGY, 1995, 24 (03) :241-250
[3]   PROLONGED PRESENCE OF GLUTAMATE DURING EXCITATORY SYNAPTIC TRANSMISSION TO CEREBELLAR PURKINJE-CELLS [J].
BARBOUR, B ;
KELLER, BU ;
LLANO, I ;
MARTY, A .
NEURON, 1994, 12 (06) :1331-1343
[4]   Physiological and pathological operation of glutamate transporters [J].
Billups, B ;
Rossi, D ;
Oshima, T ;
Warr, O ;
Takahashi, M ;
Sarantis, M ;
Szatkowski, M ;
Attwell, D .
GLUTAMATE SYNAPSE AS A THERAPEUTICAL TARGET: MOLECULAR ORGANIZATION AND PATHOLOGY OF THE GLUTAMATE SYNAPSE, 1998, 116 :45-57
[5]   Drug therapy: Mechanisms of actions of inhaled anesthetics [J].
Campagna, JA ;
Miller, KW ;
Forman, SA .
NEW ENGLAND JOURNAL OF MEDICINE, 2003, 348 (21) :2110-2124
[6]   Glutamate uptake [J].
Danbolt, NC .
PROGRESS IN NEUROBIOLOGY, 2001, 65 (01) :1-105
[7]  
Davis KE, 1998, J NEUROSCI, V18, P2475
[8]   INHIBITION OF PROTEIN-KINASE C-ALPHA EXPRESSION IN MICE AFTER SYSTEMIC ADMINISTRATION OF PHOSPHOROTHIOATE ANTISENSE OLIGODEOXYNUCLEOTIDES [J].
DEAN, NM ;
MCKAY, R .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (24) :11762-11766
[9]   Protein kinase C isozymes and the regulation of diverse cell responses [J].
Dempsey, EC ;
Newton, AC ;
Mochly-Rosen, D ;
Fields, AP ;
Reyland, ME ;
Insel, PA ;
Messing, RO .
AMERICAN JOURNAL OF PHYSIOLOGY-LUNG CELLULAR AND MOLECULAR PHYSIOLOGY, 2000, 279 (03) :L429-L438
[10]  
Diamond JS, 1997, J NEUROSCI, V17, P4672