Optimized amylolytic enzymes production in Saccharomycopsis fibuligera DSM-70554 -: An approach to efficient cassava starch utilization

被引:25
作者
Gonzalez, C. F. [1 ]
Farina, J. I. [1 ]
de Figueroa, L. I. C. [1 ,2 ]
机构
[1] Consejo Nacl Invest Cient & Tecn, PROIMI, San Miguel De Tucuman, Argentina
[2] Univ Nacl Tucuman, Fac Bioquim Quim & Farm, San Miguel De Tucuman, Argentina
关键词
Saccharomycopsis fibuligera; alpha-amylase; glucoamylase; fermentation; cassava starch;
D O I
10.1016/j.enzmictec.2007.10.005
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Different nutritional and operative conditions for improving amylolytic enzyme production by the amylolytic yeast Saccharomycopsis fibuligera DSM-70554 were evaluated. Under selected conditions, cassava starch could be efficiently utilized. Culture conditions such as oxygen saturation (50% dissolved oxygen tension), temperature (34 degrees C) and pH (5.5) showed a significant influence on (alpha-amylase and glucoamylase production. An optimized culture medium (OPT) formulated by the chemostat pulse-shift method, containing yeast extract as the most favorable organic nitrogen source, vitamins and certain salts (MgCl2, MnSO4, CaCl2) allowed to achieve the highest amylolytic enzyme production, thus leading to an optimal liquefaction and saccharification of cassava starch. Tween 80 (0.2 - 1 % w/v) demonstrated to be a favorable amendment for amylolytic enzyme production. Under the conditions herein described, a 97% degradation of cassava starch could be finally attained under batch culture mode. Maximal values of 633.3 U L-1 h(-1) of alpha-amylase and 72.1 U L-1 h(-1) of glucoamylase under optimized conditions represented -9 and -3-fold increments, respectively, as compared to preliminary fermentation assays under non-optimal conditions. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:272 / 277
页数:6
相关论文
共 38 条
[1]   CONTINUOUS FERMENTATION OF SACCHAROMYCOPSIS FIBULIGERA AND CANDIDA-UTILIS [J].
ADMASSU, W ;
KORUS, RA ;
HEIMSCH, RC .
BIOTECHNOLOGY AND BIOENGINEERING, 1984, 26 (12) :1511-1513
[2]  
Aiyer PV, 2005, AFR J BIOTECHNOL, V4, P1525
[3]   Glucoamylase production by solid-state fermentation using rice flake manufacturing waste products as substrate [J].
Anto, H ;
Trivedi, UB ;
Patel, KC .
BIORESOURCE TECHNOLOGY, 2006, 97 (10) :1161-1166
[4]  
de Figueroa LIC, 2001, METH BIOTEC, V14, P307
[5]   MIXED CULTURE OF SACCHAROMYCOPSIS-FIBULIGER AND ZYMOMONAS-MOBILIS ON STARCH-USE OF OXYGEN AS A REGULATOR [J].
DOSTALEK, M ;
HAGGSTROM, MH .
EUROPEAN JOURNAL OF APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 1983, 17 (05) :269-274
[6]   COLORIMETRIC METHOD FOR DETERMINATION OF SUGARS AND RELATED SUBSTANCES [J].
DUBOIS, M ;
GILLES, KA ;
HAMILTON, JK ;
REBERS, PA ;
SMITH, F .
ANALYTICAL CHEMISTRY, 1956, 28 (03) :350-356
[7]   Starch fermentation by recombinant Saccharomyces cerevisiae strains expressing the α-amylase and glucoamylase genes from Lipomyces kononenkoae and Saccharomycopsis fibuligera [J].
Eksteen, JM ;
van Resnburg, P ;
Otero, RRC ;
Pretorius, IS .
BIOTECHNOLOGY AND BIOENGINEERING, 2003, 84 (06) :639-646
[8]   SCALE-UP OF GLUCOAMYLASE PRODUCTION BY SACCHAROMYCOPSIS-FIBULIGERA [J].
FUTATSUGI, M ;
OGAWA, T ;
FUKUDA, H .
JOURNAL OF FERMENTATION AND BIOENGINEERING, 1993, 76 (05) :419-422
[9]  
Goes AP, 1999, J CHEM TECHNOL BIOT, V74, P709, DOI [10.1002/(SICI)1097-4660(199907)74:7<709::AID-JCTB94>3.0.CO
[10]  
2-C, 10.1002/(SICI)1097-4660(199907)74:7&lt