Periodic solutions of a delayed periodic logistic equation

被引:33
作者
Chen, YM [1 ]
机构
[1] Wilfrid Laurier Univ, Dept Math, Waterloo, ON N2L 3C5, Canada
关键词
positive periodic solution; delayed logistic equation; coincidence degree;
D O I
10.1016/S0893-9659(03)90093-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Consider the delayed periodic logistic equation, (N)over dot(t) = N(t) [a(t) - b(t)N-p(t - sigma(t)) - c(t)N-q(t - tau(t))], which describes the evolution of a single species. The existence of a positive periodic solution is established by using the method of coincidence degree. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1047 / 1051
页数:5
相关论文
共 9 条
[1]  
Deimling K., 1985, NONLINEAR FUNCTIONAL, DOI DOI 10.1007/978-3-662-00547-7
[2]   PERIODIC-SOLUTIONS OF SINGLE-SPECIES MODELS WITH PERIODIC DELAY [J].
FREEDMAN, HI ;
WU, JH .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1992, 23 (03) :689-701
[3]  
Gaines RE, 1977, COINCIDENCE DEGREE N, DOI DOI 10.1007/BFB0089537
[4]   ON THE OSCILLATION AND ASYMPTOTIC-BEHAVIOR OF N(T)=N(T)[A+BN(T-TAU)-CN2(T-TAU)] [J].
GOPALSAMY, K ;
LADAS, G .
QUARTERLY OF APPLIED MATHEMATICS, 1990, 48 (03) :433-440
[5]  
Kuang Y, 1993, Mathematics in Science and Engineering
[6]   ON A PERIODIC DELAY POPULATION-MODEL [J].
LALLI, BS ;
ZHANG, BG .
QUARTERLY OF APPLIED MATHEMATICS, 1994, 52 (01) :35-42
[7]   Periodic solutions of periodic delay Lotka-Volterra equations and systems [J].
Li, YK ;
Kuang, Y .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 255 (01) :260-280
[8]  
Pianka E. R., 1974, EVOL ECOL
[9]   Global attractivity and oscillation in a nonlinear delay equation [J].
Yan, JR ;
Feng, QX .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 43 (01) :101-108