Effects of (multi)branching of dipolar chromophores on photophysical properties and two-photon absorption

被引:354
作者
Katan, C
Terenziani, F
Mongin, O
Werts, MHV
Porrès, L
Pons, T
Mertz, J
Tretiak, S
Blanchard-Desce, M
机构
[1] Univ Rennes 1, CNRS UMR 6510, Inst Chim, F-35042 Rennes, France
[2] Ecole Super Phys & Chim Ind Ville Paris, INSERM, EPI 00 02, CNRS,FRE 2500, F-75231 Paris, France
[3] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
关键词
D O I
10.1021/jp044193e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
To investigate the effect of branching on linear and nonlinear optical properties, a specific series of chromophores, epitome of (multi)branched dipoles, has been thoroughly explored by a combined theoretical and experimental approach. Excited-state structure calculations based on quantum-chemical techniques (time-dependent density functional theory) as well as a Frenkel exciton model nicely complement experimental photluminescence and one- and two-photon absorption findings and contribute to their interpretation. This allowed us to get a deep insight into the nature of fundamental excited-state dynamics and the nonlinear optical (NLO) response involved. Both experiment and theory reveal that a multidimensional intramolecular charge transfer takes place from the donating moiety to the periphery of the branched molecules upon excitation, while fluorescence stems from an excited state localized on one of the dipolar branches. Branching is also observed to lead to cooperative enhancement of two-photon absorption (TPA) while maintaining high fluorescence quantum yield, thanks to localization of the emitting state. The comparison between results obtained in the Frenkel exciton scheme and ab initio results suggests the coherent coupling between branches as one of the possible mechanisms for the observed enhancement. New strategies for the rational design of NLO molecular assemblies are thus inferred on the basis of the acquired insights.
引用
收藏
页码:3024 / 3037
页数:14
相关论文
共 112 条
[1]   Novel heteroaromatic-based multi-branched dyes with enhanced two-photon absorption activity [J].
Abbotto, A ;
Beverina, L ;
Bozio, R ;
Facchetti, A ;
Ferrante, C ;
Pagani, GA ;
Pedron, D ;
Signorini, R .
CHEMICAL COMMUNICATIONS, 2003, (17) :2144-2145
[2]   Novel heterocycle-based two-photon absorbing dyes [J].
Abbotto, A ;
Beverina, L ;
Bozio, R ;
Facchetti, A ;
Ferrante, C ;
Pagani, GA ;
Pedron, D ;
Signorini, R .
ORGANIC LETTERS, 2002, 4 (09) :1495-1498
[3]   Novel two-photon absorbing dendritic structures [J].
Adronov, A ;
Fréchet, JMJ ;
He, GS ;
Kim, KS ;
Chung, SJ ;
Swiatkiewicz, J ;
Prasad, PN .
CHEMISTRY OF MATERIALS, 2000, 12 (10) :2838-+
[4]   ELECTRONIC-STRUCTURE CALCULATIONS ON WORKSTATION COMPUTERS - THE PROGRAM SYSTEM TURBOMOLE [J].
AHLRICHS, R ;
BAR, M ;
HASER, M ;
HORN, H ;
KOLMEL, C .
CHEMICAL PHYSICS LETTERS, 1989, 162 (03) :165-169
[5]   Design of organic molecules with large two-photon absorption cross sections [J].
Albota, M ;
Beljonne, D ;
Brédas, JL ;
Ehrlich, JE ;
Fu, JY ;
Heikal, AA ;
Hess, SE ;
Kogej, T ;
Levin, MD ;
Marder, SR ;
McCord-Maughon, D ;
Perry, JW ;
Röckel, H ;
Rumi, M ;
Subramaniam, C ;
Webb, WW ;
Wu, XL ;
Xu, C .
SCIENCE, 1998, 281 (5383) :1653-1656
[6]   Two-photon fluorescence excitation cross sections of biomolecular probes from 690 to 960 nm [J].
Albota, MA ;
Xu, C ;
Webb, WW .
APPLIED OPTICS, 1998, 37 (31) :7352-7356
[7]  
[Anonymous], HDB CONDUCTING POLYM
[8]   Two-photon absorption in three-dimensional chromophores based on [2.2]-paracyclophane [J].
Bartholomew, GP ;
Rumi, M ;
Pond, SJK ;
Perry, JW ;
Tretiak, S ;
Bazan, GC .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (37) :11529-11542
[9]   A new photosensitive polymeric material for WORM optical data storage using multichannel two-photon fluorescence readout [J].
Belfield, KD ;
Schafer, KJ .
CHEMISTRY OF MATERIALS, 2002, 14 (09) :3656-3662
[10]  
Beljonne D, 2002, ADV FUNCT MATER, V12, P631, DOI 10.1002/1616-3028(20020916)12:9<631::AID-ADFM631>3.0.CO