Using a bootstrap method to choose the sample fraction in tail index estimation

被引:240
作者
Danielsson, J
de Haan, L
Peng, L
de Vries, CG
机构
[1] Erasmus Univ, NL-3000 DR Rotterdam, Netherlands
[2] London Sch Econ, London WC2A 2AE, England
[3] Univ Iceland, IS-101 Reykjavik, Iceland
[4] Tinbergen Inst, Rotterdam, Netherlands
关键词
tail index; bootstrap; bias; mean squared error; optimal extreme sample fraction;
D O I
10.1006/jmva.2000.1903
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Tail index estimation depends for its accuracy on a precise choice of the sample fraction, i.e., the number of extreme older statistics on which the estimation is based. A complete solution to the sample fraction selection is given by means of a two-step subsample bootstrap method. This method adaptively determines the sample fraction that minimizes the asymptotic mean-squared error. Unlike previous methods, prior knowledge of the second-older parameter is not required. In addition, we are able to dispense with the need for a prior estimate of the tail index which already converges roughly at the optimal rate. The only arbitrary choice of parameters is the number of Monte Carlo replications. (C) 2001 Academic Press.
引用
收藏
页码:226 / 248
页数:23
相关论文
共 22 条
[1]  
BAILLIE RT, 1997, J EMPIR FINANC, V4, P69
[2]   ARCH MODELING IN FINANCE - A REVIEW OF THE THEORY AND EMPIRICAL-EVIDENCE [J].
BOLLERSLEV, T ;
CHOU, RY ;
KRONER, KF .
JOURNAL OF ECONOMETRICS, 1992, 52 (1-2) :5-59
[3]   KERNEL ESTIMATES OF THE TAIL INDEX OF A DISTRIBUTION [J].
CSORGO, S ;
DEHEUVELS, P ;
MASON, D .
ANNALS OF STATISTICS, 1985, 13 (03) :1050-1077
[4]  
Danielsson J., 1997, J Empir Finance, V4, P241, DOI [10.1016/S0927-5398(97)00008-X, DOI 10.1016/S0927-5398(97)00008-X]
[5]   TAIL ESTIMATES MOTIVATED BY EXTREME VALUE THEORY [J].
DAVIS, R ;
RESNICK, S .
ANNALS OF STATISTICS, 1984, 12 (04) :1467-1487
[6]  
De Haan L., 1994, EXTREME VALUE THEORY, P471, DOI DOI 10.1007/978-1-4613-3638-929
[7]  
DEHAAN L, 1980, J ROY STAT SOC B MET, V42, P83
[8]   OPTIMAL CHOICE OF SAMPLE FRACTION IN EXTREME-VALUE ESTIMATION [J].
DEKKERS, ALM ;
DEHAAN, L .
JOURNAL OF MULTIVARIATE ANALYSIS, 1993, 47 (02) :173-195
[9]   Selecting the optimal sample fraction in univariate extreme value estimation [J].
Drees, H ;
Kaufmann, E .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1998, 75 (02) :149-172
[10]  
Embrechts P., 1997, Modelling extreme events for insurance and finance