The moving line ideal basis of planar rational curves

被引:104
作者
Cox, DA
Sederberg, TW [1 ]
Chen, FL
机构
[1] Brigham Young Univ, Dept Civil Engn, Provo, UT 84602 USA
[2] Amherst Coll, Dept Math & Comp Sci, Amherst, MA 01002 USA
[3] Univ Sci & Technol China, Hefei, Peoples R China
关键词
rational curves; implicitization; ideals;
D O I
10.1016/S0167-8396(98)00014-4
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper shows that the ideal of any degree n planar rational curve can be generated by two polynomials that: are each linear in x, y and degree n(1) and n(2) (greater than or equal to n(1)) in t, n(1) + n(2) = n. The value of n(1) is fixed for a given rational curve, and serves to split all degree n curves into [n/2] + 1 equivalence classes. These classes bear on the determinantal form of the implicit equation of the rational curve. (C) 1998 Elsevier Science B.V.
引用
收藏
页码:803 / 827
页数:25
相关论文
共 15 条
[1]  
[Anonymous], BASIC ALGEBRA
[2]  
[Anonymous], 1998, USING ALGEBRAIC GEOM, DOI DOI 10.1007/978-1-4757-6911-1
[3]   USING MULTIVARIATE RESULTANTS TO FIND THE INTERSECTION OF 3 QUADRIC SURFACES [J].
CHIONH, EW ;
GOLDMAN, RN ;
MILLER, JR .
ACM TRANSACTIONS ON GRAPHICS, 1991, 10 (04) :378-400
[4]  
Cox DA, 1996, IDEALS VARIETIES ALG
[5]  
Garrity T., 1989, Computer-Aided Geometric Design, V6, P137, DOI 10.1016/0167-8396(89)90017-4
[6]  
Hilbert David, 1890, MATH ANN, V36, P473
[7]  
Hoffmann CM., 1989, GEOMETRIC SOLID MODE
[8]  
JACOBSEN N, 1974, BASIC ALGEBRA, V1
[9]   ALGORITHMS FOR INTERSECTING PARAMETRIC AND ALGEBRAIC-CURVES .2. MULTIPLE INTERSECTIONS [J].
MANOCHA, D ;
DEMMEL, J .
GRAPHICAL MODELS AND IMAGE PROCESSING, 1995, 57 (02) :81-100
[10]  
Meyer Franz, 1887, MATH ANN, V30, P30