Flows on quaternionic-Kahler and very special real manifolds

被引:25
作者
Alekseevsky, DV
Cortés, V
Devchand, C
Van Proeyen, A
机构
[1] Univ Hull, Dept Math, Kingston Upon Hull HU6 7RX, N Humberside, England
[2] Univ Bonn, Inst Math, D-53115 Bonn, Germany
[3] Katholieke Univ Leuven, Inst Theoret Fys, B-30001 Louvain, Belgium
关键词
D O I
10.1007/s00220-003-0850-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
BPS solutions of 5-dimensional supergravity correspond to certain gradient flows on the product MxN of a quaternionic-Kahler manifold M of negative scalar curvature and a very special real manifold N of dimension ngreater than or equal to0. Such gradient flows are generated by the ``energy function'' f=P-2, where P is a (bundle-valued) moment map associated to n+1 Killing vector fields on M. We calculate the Hessian of f at critical points and derive some properties of its spectrum for general quaternionic-Kahler manifolds. For the homogeneous quaternionic-Kahler manifolds we prove more specific results depending on the structure of the isotropy group. For example, we show that there always exists a Killing vector field vanishing at a point p?M such that the Hessian of f at p has split signature. This generalizes results obtained recently for the complex hyperbolic plane (universal hypermultiplet) in the context of 5-dimensional supergravity. For symmetric quaternionic-Kahler manifolds we show the existence of non-degenerate local extrema of f, for appropriate Killing vector fields. On the other hand, for the non-symmetric homogeneous quaternionic-Kahler manifolds we find degenerate local minima.
引用
收藏
页码:525 / 543
页数:19
相关论文
共 27 条
[1]   Large N field theories, string theory and gravity [J].
Aharony, O ;
Gubser, SS ;
Maldacena, J ;
Ooguri, H ;
Oz, Y .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2000, 323 (3-4) :183-386
[2]  
ALEKSEEVSKII D. V., 1968, FUNCT ANAL APPL, V2, P97, DOI 10.1007/BF01075943
[3]  
Alekseevskii DV., 1975, Izv. Akad. Nauk SSSR Ser. Mat, V39, P297
[4]  
Alekseevsky DV, 1997, B UNIONE MAT ITAL, V11B, P217
[5]  
BAGGER J, 2003, CONCISE ENCY SUPERSY
[6]   Domain walls, black holes, and supersymmetric quantum mechanics [J].
Behrndt, K ;
Gukov, S ;
Shmakova, M .
NUCLEAR PHYSICS B, 2001, 601 (1-2) :49-76
[7]  
Behrndt K, 2001, J HIGH ENERGY PHYS
[8]   Anti-de Sitter vacua of gauged supergravities with 8 supercharges [J].
Behrndt, K ;
Cvetic, M .
PHYSICAL REVIEW D, 2000, 61 (10)
[9]  
Cardoso GL, 2001, J HIGH ENERGY PHYS
[10]   Hypermultiplets, domain walls, and supersymmetric attractors [J].
Ceresole, A ;
Dall'Agata, G ;
Kallosh, R ;
Van Proeyen, A .
PHYSICAL REVIEW D, 2001, 64 (10)