Glucose ingestion fails to inhibit hypothalamic neuronal activity in patients with type 2 diabetes

被引:61
作者
Vidarsdottir, Solrun
Smeets, Paul A. M.
Eichelsheim, Diane L.
van Osch, Matthias J. P.
Viergever, Max A.
Romijn, Johannes A.
van der Grond, Jeroen
Pijl, Hanno
机构
[1] Leiden Univ, Med Ctr, Dept Endocrinol & Metab, NL-2300 RC Leiden, Netherlands
[2] Univ Utrecht, Med Ctr, Image Sci Inst, Utrecht, Netherlands
[3] Leiden Univ, Med Ctr, Dept Radiol, Leiden, Netherlands
关键词
GLUCAGON-LIKE PEPTIDE-1; CENTRAL-NERVOUS-SYSTEM; FUNCTIONAL MRI; FOOD-INTAKE; INSULIN; BRAIN; HOMEOSTASIS; RESPONSES; OBESITY; HUMANS;
D O I
10.2337/db07-0193
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
OBJECTIVE-The hypothalamus plays a critical role in the regulation of energy balance and fuel flux. Glucose ingestion inhibits hypothalamic neuronal activity in healthy humans. We hypothesized that hypothalamic neuronal activity in response to an oral glucose load would be altered in patients with type 2 diabetes. RESEARCH DESIGN AND METHODS-In this randomized, single blind, case-control study, 7 type 2 diabetic men (BMI 27.9 +/- 2.0 kg/m(2)) and 10 age-matched healthy men (BMI 26.1 +/- 3.2 kg/m(2)) were scanned twice for 38 min on separate days using functional magnetic resonance imaging. After 8 min, they ingested either a glucose solution (75 g in 300 ml water) or water (300 ml). RESULTS-Glucose ingestion resulted in a prolonged significant blood oxygen level-dependent signal decrease in the upper and lower hypothalamus in healthy subjects but not in diabetic patients. CONCLUSIONS-Glucose ingestion fails to inhibit hypothalamic neuronal activity in patients with type 2 diabetes. Failure of neural circuits to properly adapt to nutrient ingestion may contribute to metabolic imbalance in type 2 diabetic patients.
引用
收藏
页码:2547 / 2550
页数:4
相关论文
共 20 条
[1]   The expression of GLP-1 receptor mRNA and protein allows the effect of GLP-1 on glucose metabolism in the human hypothalamus and brainstem [J].
Alvarez, E ;
Martínez, MD ;
Roncero, I ;
Chowen, JA ;
García-Cuartero, B ;
Gispert, JD ;
Sanz, C ;
Vázquez, P ;
Maldonado, A ;
de Cáceres, J ;
Desco, M ;
Pozo, MA ;
Blázquez, E .
JOURNAL OF NEUROCHEMISTRY, 2005, 92 (04) :798-806
[2]   The gut and energy balance: Visceral allies in the obesity wars [J].
Badman, MK ;
Flier, JS .
SCIENCE, 2005, 307 (5717) :1909-1914
[3]   Gut hormone PYY3-36 physiologically inhibits food intake [J].
Batterham, RL ;
Cowley, MA ;
Small, CJ ;
Herzog, H ;
Cohen, MA ;
Dakin, CL ;
Wren, AM ;
Brynes, AE ;
Low, MJ ;
Ghatei, MA ;
Cone, RD ;
Bloom, SR .
NATURE, 2002, 418 (6898) :650-654
[4]   Pain dynamics observed by functional magnetic resonance imaging: Differential regression analysis technique [J].
Cho, ZH ;
Son, YD ;
Kang, CK ;
Han, JY ;
Wong, EK ;
Bai, SJ .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2003, 18 (03) :273-283
[5]   Perivascular nerves and the regulation of cerebrovascular tone [J].
Hamel, E .
JOURNAL OF APPLIED PHYSIOLOGY, 2006, 100 (03) :1059-1064
[6]   Role of neuronal glucosensing in the regulation of energy homeostasis [J].
Levin, Barry E. ;
Kang, Ling ;
Sanders, Nicole M. ;
Dunn-Meynell, Ambrose A. .
DIABETES, 2006, 55 :S122-S130
[7]   The temporal response of the brain after eating revealed by functional MRI [J].
Liu, YJ ;
Gao, JH ;
Liu, HL ;
Fox, PT .
NATURE, 2000, 405 (6790) :1058-1062
[8]   On the nature of the BOLD fMRI contrast mechanism [J].
Logothetis, NK ;
Pfeuffer, J .
MAGNETIC RESONANCE IMAGING, 2004, 22 (10) :1517-1531
[9]   Altered hypothalamic function in response to glucose ingestion in obese humans [J].
Matsuda, M ;
Liu, YJ ;
Mahankali, S ;
Pu, YL ;
Mahankali, A ;
Wang, J ;
DeFronzo, RA ;
Fox, PT ;
Gao, JH .
DIABETES, 1999, 48 (09) :1801-1806
[10]   Central nervous system control of food intake and body weight [J].
Morton, G. J. ;
Cummings, D. E. ;
Baskin, D. G. ;
Barsh, G. S. ;
Schwartz, M. W. .
NATURE, 2006, 443 (7109) :289-295