Epigenetic regulation of normal and malignant hematopoiesis

被引:119
作者
Rice, K. L. [1 ]
Hormaeche, I. [1 ]
Licht, J. D. [1 ]
机构
[1] Northwestern Univ, Div Hematol Oncol, Feinberg Sch Med, Chicago, IL 60611 USA
关键词
hematopoiesis; epigenetics; histone code; methylation; leukemia; acetylation;
D O I
10.1038/sj.onc.1210755
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The molecular processes governing hematopoiesis involve the interplay between lineage- specific transcription factors and a series of epigenetic tags, including DNA methylation and covalent histone tail modifications, such as acetylation, methylation, phosphorylation, SUMOylation and ubiquitylation. These post- translational modifications, which collectively constitute the 'histone code', are capable of affecting chromatin structure and gene transcription and are catalysed by opposing families of enzymes, allowing the developmental potential of hematopoietic stem cells to be dynamically regulated. The essential role of these enzymes in regulating normal blood development is highlighted by the finding that members from all families of chromatin regulators are targets for dysregulation in many hematological malignancies, and that patterns of histone modification are globally affected in cancer as well as the regulatory regions of specific oncogenes and tumor suppressors. The discovery that these epigenetic marks can be reversed by compounds targeting aberrant transcription factor/ co- activator/ co- repressor interactions and histone- modifying activities, provides the basis for an exciting field in which the epigenome of cancer cells may be manipulated with potential therapeutic benefits.
引用
收藏
页码:6697 / 6714
页数:18
相关论文
共 178 条
[1]   Functional mammalian homologues of the Drosophila PEV-modifier Su(var)3-9 encode centromere-associated proteins which complex with the heterochromatin component M31 [J].
Aagaard, L ;
Laible, G ;
Selenko, P ;
Schmid, M ;
Dorn, R ;
Schotta, G ;
Kuhfittig, S ;
Wolf, A ;
Lebersorger, A ;
Singh, PB ;
Reuter, G ;
Jenuwein, T .
EMBO JOURNAL, 1999, 18 (07) :1923-1938
[2]   THE PHD FINGER - IMPLICATIONS FOR CHROMATIN-MEDIATED TRANSCRIPTIONAL REGULATION [J].
AASLAND, R ;
GIBSON, TJ ;
STEWART, AF .
TRENDS IN BIOCHEMICAL SCIENCES, 1995, 20 (02) :56-59
[3]   DNA methylation in ovarian cancer - II. Expression of DNA methyltransferases in ovarian cancer cell lines and normal ovarian epithelial cells [J].
Ahluwalia, A ;
Hurteau, JA ;
Bigsby, RM ;
Nephew, KP .
GYNECOLOGIC ONCOLOGY, 2001, 82 (02) :299-304
[4]   The histone variant H3.3 marks active chromatin by replication-independent nucleosome assembly [J].
Ahmad, K ;
Henikoff, S .
MOLECULAR CELL, 2002, 9 (06) :1191-1200
[5]   A Suv39h-dependent mechanism for silencing S-phase genes in differentiating but not in cycling cells [J].
Ait-Si-Ali, S ;
Guasconi, V ;
Fritsch, L ;
Yahi, H ;
Sekhri, R ;
Naguibneva, I ;
Robin, P ;
Cabon, F ;
Polesskaya, A ;
Harel-Bellan, A .
EMBO JOURNAL, 2004, 23 (03) :605-615
[6]  
ALLIS CD, 1980, CELL, V20, P55
[7]   The regulation of genes and genomes by small RNAs [J].
Ambros, Victor ;
Chen, Xuemei .
DEVELOPMENT, 2007, 134 (09) :1635-1641
[8]   NSD3, a new SET domain-containing gene, maps to 8p12 and is amplified in human breast cancer cell lines [J].
Angrand, PO ;
Apiou, F ;
Stewart, AF ;
Dutrillaux, B ;
Losson, R ;
Chambon, P .
GENOMICS, 2001, 74 (01) :79-88
[9]   NUMBER OF CPG ISLANDS AND GENES IN HUMAN AND MOUSE [J].
ANTEQUERA, F ;
BIRD, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (24) :11995-11999
[10]   A novel class of small RNAs bind to MILI protein in mouse testes [J].
Aravin, Alexei ;
Gaidatzis, Dimos ;
Pfeffer, Sebastien ;
Lagos-Quintana, Mariana ;
Landgraf, Pablo ;
Iovino, Nicola ;
Morris, Patricia ;
Brownstein, Michael J. ;
Kuramochi-Miyagawa, Satomi ;
Nakano, Toru ;
Chien, Minchen ;
Russo, James J. ;
Ju, Jingyue ;
Sheridan, Robert ;
Sander, Chris ;
Zavolan, Mihaela ;
Tuschl, Thomas .
NATURE, 2006, 442 (7099) :203-207