Comparative genetics at the gene and chromosome levels between rice (Oryza sativa) and wildrice (Zizania palustris)

被引:21
作者
Hass, BL
Pires, JC
Porter, R
Phillips, RL
Jackson, SA
机构
[1] Purdue Univ, Dept Agron, W Lafayette, IN 47907 USA
[2] Univ Wisconsin, Dept Agron, Madison, WI 53706 USA
[3] Univ Minnesota, Dept Agron & Plant Genet, St Paul, MN 55108 USA
关键词
physical mapping; FISH; centromere; genome evolution; rice;
D O I
10.1007/s00122-003-1273-5
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Using comparative genetics, genes, repetitive DNA sequences and chromosomes were studied in the Oryzeae in order to more fully exploit the rice genome sequence data. Of particular focus was Zizania palustris L., n = 15, commonly known as American wildrice. Previous work has shown that rice chromosomes 1, 4 and 9 are duplicated in wildrice. The Adh1 and Adh2 genes were sequenced and, based on phylogenetic analyses, found to be duplicated in wildrice. The majority of the sequence diversity in the Adh sequences was in intron 3, in which were found several MITE insertions. Cytological and molecular approaches were used to analyze the evolution of rDNA and centromeric repetitive sequences in the Oryzeae. In wildrice, copies of the 5S rDNA monomer were found at two loci on two different chromosomes near the centromeres, as in rice. One nucleolar organizer region (NOR) locus was found adjacent to the telomere, as in rice. RCS1, a middle repetitive sequence in rice, was present in all of the centromeres of wildrice. RCS2/CentO, the highly repetitive component of Oryza sativa L. centromeres, was conserved in eight of the Oryza species examined, but was not found in wildrice. Three other middle repetitive centromeric sequences (RCH1, RCH2/CentO and RCH3) were also examined and found to have variable evolutionary patterns between species of Oryza and Zizania.
引用
收藏
页码:773 / 782
页数:10
相关论文
共 40 条
[1]   Chromosome-specific molecular organization of maize (Zea mays L.) centromeric regions [J].
Ananiev, EV ;
Phillips, RL ;
Rines, HW .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (22) :13073-13078
[2]  
[Anonymous], 1983, COLD SPRING HARBOR L
[3]   A cereal centromeric sequence [J].
AragonAlcaide, L ;
Miller, T ;
Schwarzacher, T ;
Reader, S ;
Moore, G .
CHROMOSOMA, 1996, 105 (05) :261-268
[4]   A computer-based systematic survey reveals the predominance of small inverted-repeat elements in wild-type rice genes [J].
Bureau, TE ;
Ronald, PC ;
Wessler, SR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (16) :8524-8529
[5]   Microcolinearity in sh2-homologous regions of the maize, rice, and sorghum genomes [J].
Chen, M ;
SanMiguel, P ;
deOliveira, AC ;
Woo, SS ;
Zhang, H ;
Wing, RA ;
Bennetzen, JL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (07) :3431-3435
[6]   Functional rice centromeres are marked by a satellite repeat and a centromere-specific retrotransposon [J].
Cheng, ZK ;
Dong, FG ;
Langdon, T ;
Shu, OY ;
Buell, CR ;
Gu, MH ;
Blattner, FR ;
Jiang, JM .
PLANT CELL, 2002, 14 (08) :1691-1704
[7]   Two-dimensional RFLP analyses reveal megabase-sized clusters of rRNA gene variants in Arabidopsis thaliana, suggesting local spreading of variants as the mode for gene homogenization during concerted evolution [J].
Copenhaver, GP ;
Pikaard, CS .
PLANT JOURNAL, 1996, 9 (02) :273-282
[8]   RFLP and physical mapping with an rDNA-specific endonuclease reveals that nucleolus organizer regions of Arabidopsis thaliana adjoin the telomeres on chromosomes 2 and 4 [J].
Copenhaver, GP ;
Pikaard, CS .
PLANT JOURNAL, 1996, 9 (02) :259-272
[9]   Genome relationships: The grass model in current research [J].
Devos, KM ;
Gale, MD .
PLANT CELL, 2000, 12 (05) :637-646
[10]   Rice (Oryza sativa) centromeric regions consist of complex DNA [J].
Dong, FG ;
Miller, JT ;
Jackson, SA ;
Wang, GL ;
Ronald, PC ;
Jiang, JM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (14) :8135-8140