Bandwidth selection for kernel conditional density estimation

被引:186
作者
Bashtannyk, DM [1 ]
Hyndman, RJ [1 ]
机构
[1] Monash Univ, Dept Econometr & Business Stat, Melbourne, Vic 3800, Australia
基金
澳大利亚研究理事会;
关键词
bandwidth selection; conditioning; density estimation; kernel smoothing;
D O I
10.1016/S0167-9473(00)00046-3
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We consider bandwidth selection for the kernel estimator of conditional density with one explanatory variable. Several bandwidth selection methods are derived ranging from fast rules-of-thumb which assume the underlying densities are known to relatively slow procedures which use the bootstrap. The methods are compared and a practical bandwidth selection strategy which combines the methods is proposed. The methods are compared using two simulation studies and a real data set. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:279 / 298
页数:20
相关论文
共 14 条
[1]   NEW LOOK AT STATISTICAL-MODEL IDENTIFICATION [J].
AKAIKE, H .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1974, AC19 (06) :716-723
[2]  
Akaike H., 1973, 2 INT S INF THEOR, P268, DOI 10.1007/978-1-4612-1694-0_15
[3]  
AZZALINI A, 1990, J R STAT SOC C-APPL, V39, P357
[4]   Estimation of conditional densities and sensitivity measures in nonlinear dynamical systems [J].
Fan, JQ ;
Yao, QW ;
Tong, H .
BIOMETRIKA, 1996, 83 (01) :189-206
[5]   Methods for estimating a conditional distribution function [J].
Hall, P ;
Wolff, RCL ;
Yao, QW .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1999, 94 (445) :154-163
[6]  
Hardle W., 1991, Smoothing Techniques
[7]  
Hyndman R. J., 1996, J COMPUT GRAPH STAT, V5, P315, DOI DOI 10.2307/1390887
[8]  
HYNDMAN RJ, 1998, 1798 MON U DEP EC BU
[9]  
*MATHS INC, 2000, S PLUS 2000 WIND
[10]  
Rosenblatt M., 1969, MULTIVARIATE ANALYSI, P25