Dependence structure and risk measure

被引:87
作者
Ané, T
Kharoubi, C
机构
[1] Univ Lausanne, CH-1015 Lausanne, Switzerland
[2] Univ Paris 09, F-75775 Paris 16, France
[3] Univ Technol Sydney, Sydney, NSW 2007, Australia
关键词
D O I
10.1086/375253
中图分类号
F [经济];
学科分类号
02 ;
摘要
Understanding the relationships among multivariate assets would help one greatly about how best to position one's investments and enhance one's financial risk protection. We present a new method to model parametrically the dependence structure of stock index returns through a continuous distribution function, which links an n-dimensional density to its one-dimensional margins. The resulting multivariate model could be used in a wide range of financial applications. Focusing on risk management, we show that a misspecification of the dependence structure introduces, on average, an error in Value-at-Risk estimates.
引用
收藏
页码:411 / 438
页数:28
相关论文
共 18 条
  • [1] COOK RD, 1981, J ROY STAT SOC B MET, V43, P210
  • [2] DEHEUVELS P, 1981, PUBLICATIONS I STAT, V26, P29
  • [3] Deheuvels P., 1979, ACAD ROY BELG B S, V65, P274
  • [4] DURRLEMAN V, 2000, WHICH COPULA IS RIGH
  • [5] Embrechts P., 1999, RISK, V1999, P69
  • [6] Frank MJ., 1979, AEQUATIONES MATH, V19, P194, DOI [10.1007/BF02189866, DOI 10.1007/BF02189866]
  • [7] Frees E.W., 1998, N. Am. Actuar. J., V2, P1, DOI DOI 10.1080/10920277.1998.10595667
  • [8] BIVARIATE EXPONENTIAL-DISTRIBUTIONS
    GUMBEL, EJ
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1960, 55 (292) : 698 - 707
  • [9] Joe H., 1996, The Estimation Method of Inference Functions for Margins for Multivariate Models, P1, DOI DOI 10.14288/1.0225985
  • [10] Joe H., 1997, MULTIVARIATE MODELS