Rapamycin-sensitive pathway regulates mitochondrial membrane potential, autophagy, and survival in irradiated MCF-7 cells

被引:190
作者
Paglin, S
Lee, NY
Nakar, C
Fitzgerald, M
Plotkin, J
Deuel, B
Hackett, N
McMahill, M
Sphicas, E
Lampen, N
Yahalom, J
机构
[1] Mem Sloan Kettering Canc Ctr, Dept Radiat Oncol, New York, NY 10021 USA
[2] Mem Sloan Kettering Canc Ctr, Electron Microscopy Core Facil, New York, NY 10021 USA
[3] Rockefeller Univ, Electron Microscopy Serv, New York, NY 10021 USA
关键词
D O I
10.1158/0008-5472.CAN-05-1083
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Radiation-induced inhibition of rapamycin-sensitive pathway and its effect on the cellular response to radiation were studied in the human breast cancer cell line MCF-7. Both radiation and rapamycin shared molecular targets and induced similar physiologic responses. Each of these treatments increased immunostaining of mammalian target of rapamycin (mTOR) in the nucleus, and radiation led to decreased phosphorylation of its autophosphorylation site Ser(2481). In addition to dephosphorylation of established mTOR downstream effectors 4E-binding protein 1 and p70 ribosomal S6 kinase, both treatments decreased the level of eukaryotic initiation factor 4G. Experiments with the potentiometric dye, JC-1, revealed an oligomycin-dependent increase in mitochondrial membrane potential following radiation or rapamycin treatment, suggesting that both lead to reversal of F(0)F(1)ATPase activity. Both radiation and rapamycin induced sequestration of cytoplasmic material in autophagic vacuoles. In both cases, appearance of autophagic vacuoles involved the participation of microtubule-associated protein I light chain 3 (LC3). Transient cotransfection of green fluorescent protein-LC3 with either wild-type or dominant-negative mTOR further showed that inactivation of mTOR pathway is sufficient to induce autophagy in these cells. Finally, administration of rapamycin in combination with radiation led to enhanced mitochondria hyperpolarization, p53 phosphorylation, and increased cell death. Taken together, these experiments show that radiation-induced inhibition of rapamycin-sensitive pathway in MCF-7 cells causes changes in mitochondria metabolism, development of autophagy, and an overall decrease in cell survival.
引用
收藏
页码:11061 / 11070
页数:10
相关论文
共 50 条
[1]   The tumor suppressor PTEN positively regulates macroautophagy by inhibiting the phosphatidylinositol 3-kinase/protein kinase B pathway [J].
Arico, S ;
Petiot, A ;
Bauvy, C ;
Dubbelhuis, PF ;
Meijer, AJ ;
Codogno, P ;
Ogier-Denis, E .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (38) :35243-35246
[2]   A novel hypoxia-inducible factor-independent hypoxic response regulating mammalian target of rapamycin and its targets [J].
Arsham, AM ;
Howell, JJ ;
Simon, MC .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (32) :29655-29660
[3]   Ca2+- and phospholipase D-dependent and -independent pathways activate mTOR signaling [J].
Ballou, LM ;
Jiang, YP ;
Du, GW ;
Frohman, MA ;
Lin, RZ .
FEBS LETTERS, 2003, 550 (1-3) :51-56
[4]   The TOR (target of rapamycin) signal transduction pathway regulates the stability of translation initiation factor eIF4G in the yeast Saccharomyces cerevisiae [J].
Berset, C ;
Trachsel, H ;
Altmann, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (08) :4264-4269
[5]   The mTOR inhibitor RAD001 sensitizes tumor cells to DNA-damaged induced apoptosis through inhibition of p21 translation [J].
Beuvink, I ;
Boulay, A ;
Fumagalli, S ;
Zilbermann, F ;
Ruetz, S ;
O'Reilly, T ;
Natt, F ;
Hall, J ;
Lane, HA ;
Thomas, G .
CELL, 2005, 120 (06) :747-759
[6]   Lost in translation: Dysregulation of cap-dependent translation and cancer [J].
Bjornsti, MA ;
Houghton, PJ .
CANCER CELL, 2004, 5 (06) :519-523
[7]   The TOR pathway: A target for cancer therapy [J].
Bjornsti, MA ;
Houghton, PJ .
NATURE REVIEWS CANCER, 2004, 4 (05) :335-348
[8]   Frap, FKBP12 rapamycin-associated protein, is a candidate gene for the plasmacytoma resistance locus Pctr2 and can act as a tumor suppressor gene [J].
Bliskovsky, V ;
Ramsay, ES ;
Scott, J ;
DuBois, W ;
Shi, W ;
Zhang, SL ;
Qian, XL ;
Lowy, DR ;
Mock, BA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (25) :14982-14987
[9]   PHOSPHORYLATION OF RIBOSOMAL-PROTEIN S6 IS INHIBITORY FOR AUTOPHAGY IN ISOLATED RAT HEPATOCYTES [J].
BLOMMAART, EFC ;
LUIKEN, JJFP ;
BLOMMAART, PJE ;
VANWOERKOM, GM ;
MEIJER, AJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (05) :2320-2326
[10]   Mammalian target of rapamycin (mTOR): Pro- and anti-apoptotic [J].
Castedo, M ;
Ferri, KF ;
Kroemer, G .
CELL DEATH AND DIFFERENTIATION, 2002, 9 (02) :99-100