Strength of solvent-exposed salt-bridges

被引:70
作者
Luo, R
David, L
Hung, H
Devaney, J
Gilson, MK
机构
[1] Univ Maryland, Maryland Biotechnol Inst, Ctr Adv Res Biotechnol, Rockville, MD 20850 USA
[2] Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA
[3] NIST, Gaithersburg, MD 20899 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY B | 1999年 / 103卷 / 04期
关键词
D O I
10.1021/jp982715i
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This paper uses a recently developed computer model to study the energetics of solvent-exposed salt-bridges. The model uses the "mining minima" method to compute conformational free energies with the CHARMm empirical force and the generalized Born solvation model. Satisfactory agreement is obtained in comparison with the measured binding affinities of ion pairs in solution and with the salt-bridge energetics deduced from studies of salt-bridges in helical peptides, The calculations suggest that stabilizing charge-charge interactions in helical peptides do not require well-defined salt-bridge conformations. This is in agreement with crystallographic studies of charge pairs added to T4 lysozyme by site-directed mutagenesis. The computer model is also used to make a testable prediction that arginine and phosphotyrosine residues in an (i, i + 4) relationship will form a particularly strong salt-bridge in helical peptides. The biological implications of these results are discussed.
引用
收藏
页码:727 / 736
页数:10
相关论文
共 58 条
[1]   Crystal structure of the beta-glycosidase from the hyperthermophilic archeon Sulfolobus solfataricus: Resilience as a key factor in thermostability [J].
Aguilar, CF ;
Sanderson, I ;
Moracci, M ;
Ciaramella, M ;
Nucci, R ;
Rossi, M ;
Pearl, LH .
JOURNAL OF MOLECULAR BIOLOGY, 1997, 271 (05) :789-802
[2]   PH-INDUCED DENATURATION OF PROTEINS - A SINGLE SALT BRIDGE CONTRIBUTES 3-5 KCAL MOL TO THE FREE-ENERGY OF FOLDING OF T4-LYSOZYME [J].
ANDERSON, DE ;
BECKTEL, WJ ;
DAHLQUIST, FW .
BIOCHEMISTRY, 1990, 29 (09) :2403-2408
[3]   THERMODYNAMIC PARAMETERS OF HELIX-COIL TRANSITION IN POLYPEPTIDE CHAINS .2. POLY-L-LYSINE [J].
BARSKAYA, TV .
BIOPOLYMERS, 1971, 10 (11) :2181-&
[4]   CHARMM - A PROGRAM FOR MACROMOLECULAR ENERGY, MINIMIZATION, AND DYNAMICS CALCULATIONS [J].
BROOKS, BR ;
BRUCCOLERI, RE ;
OLAFSON, BD ;
STATES, DJ ;
SWAMINATHAN, S ;
KARPLUS, M .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1983, 4 (02) :187-217
[5]   STRUCTURAL AND THERMODYNAMIC CONSEQUENCES OF BURYING A CHARGED RESIDUE WITHIN THE HYDROPHOBIC CORE OF T4 LYSOZYME [J].
DAOPIN, S ;
ANDERSON, DE ;
BAASE, WA ;
DAHLQUIST, FW ;
MATTHEWS, BW .
BIOCHEMISTRY, 1991, 30 (49) :11521-11529
[6]   CONTRIBUTIONS OF ENGINEERED SURFACE SALT BRIDGES TO THE STABILITY OF T4 LYSOZYME DETERMINED BY DIRECTED MUTAGENESIS [J].
DAOPIN, S ;
SAUER, U ;
NICHOLSON, H ;
MATTHEWS, BW .
BIOCHEMISTRY, 1991, 30 (29) :7142-7153
[7]   ELECTROSTATICS AND DIFFUSION OF MOLECULES IN SOLUTION - SIMULATIONS WITH THE UNIVERSITY-OF-HOUSTON-BROWNIAN DYNAMICS PROGRAM [J].
DAVIS, ME ;
MADURA, JD ;
LUTY, BA ;
MCCAMMON, JA .
COMPUTER PHYSICS COMMUNICATIONS, 1991, 62 (2-3) :187-197
[8]  
DOIG AJ, 1994, BIOCHEMISTRY-US, V33, P3396, DOI 10.1021/bi00177a033
[9]   THE GLU-2-=ARG-10+ SIDE-CHAIN INTERACTION IN THE C-PEPTIDE HELIX OF RIBONUCLEASE-A [J].
FAIRMAN, R ;
SHOEMAKER, KR ;
YORK, EJ ;
STEWART, JM ;
BALDWIN, RL .
BIOPHYSICAL CHEMISTRY, 1990, 37 (1-3) :107-119