'Inverse' melting of a vortex lattice

被引:249
作者
Avraham, N [1 ]
Khaykovich, B
Myasoedov, Y
Rappaport, M
Shtrikman, H
Feldman, DE
Tamegai, T
Kes, PH
Li, M
Konczykowski, M
van der Beek, K
Zeldov, E
机构
[1] Weizmann Inst Sci, Dept Condensed Matter Phys, IL-76100 Rehovot, Israel
[2] LD Landau Theoret Phys Inst, Chernogolovka 142432, Moscow Region, Russia
[3] Univ Tokyo, Dept Appl Phys, Bunkyo Ku, Tokyo 1138656, Japan
[4] Japan Sci & Technol Corp, CREST, Tokyo, Japan
[5] Leiden Univ, Kamerlingh Onnes Lab, NL-2300 RA Leiden, Netherlands
[6] Ecole Polytech, Solides Irradies Lab, CNRS, UMR 7642, F-91128 Palaiseau, France
[7] Ecole Polytech, CEA, DSM, DRECAM, F-91128 Palaiseau, France
关键词
D O I
10.1038/35078021
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Inverse melting is the process in which a crystal reversibly transforms into a liquid or amorphous phase when its temperature is decreased. Such a process is considered to be very rare(1), and the search for it is often hampered by the formation of non-equilibrium states or intermediate phases(2). Here we report the discovery of first-order inverse melting of the lattice formed by magnetic flux lines in a high-temperature superconductor. At low temperatures, disorder in the material pins the vortices, preventing the observation of their equilibrium properties and therefore the determination of whether a phase transition occurs. But by using a technique(3) to 'dither' the vortices, we were able to equilibrate the lattice, which enabled us to obtain direct thermodynamic evidence of inverse melting of the ordered lattice into a disordered vortex phase as the temperature is decreased. The ordered lattice has larger entropy than the low-temperature disordered phase. The mechanism of the first-order phase transition changes gradually from thermally induced melting at high temperatures to a disorder-induced transition at low temperatures.
引用
收藏
页码:451 / 454
页数:6
相关论文
共 30 条
[1]   VORTICES IN HIGH-TEMPERATURE SUPERCONDUCTORS [J].
BLATTER, G ;
FEIGELMAN, MV ;
GESHKENBEIN, VB ;
LARKIN, AI ;
VINOKUR, VM .
REVIEWS OF MODERN PHYSICS, 1994, 66 (04) :1125-1388
[2]   Transport properties of high-temperature superconductors: Surface vs bulk effect [J].
Burlachkov, L ;
Koshelev, AE ;
Vinokur, VM .
PHYSICAL REVIEW B, 1996, 54 (09) :6750-6757
[3]   FLUX-CREEP CROSSOVER AND RELAXATION OVER SURFACE BARRIERS IN BI2SR2CACU2O8 CRYSTALS [J].
CHIKUMOTO, N ;
KONCZYKOWSKI, M ;
MOTOHIRA, N ;
MALOZEMOFF, AP .
PHYSICAL REVIEW LETTERS, 1992, 69 (08) :1260-1263
[4]   DIRECT OBSERVATION OF MAGNETIC-FLUX LATTICE MELTING AND DECOMPOSITION IN THE HIGH-T(C) SUPERCONDUCTOR BI2.15SR1.95CACU2O8+X [J].
CUBITT, R ;
FORGAN, EM ;
YANG, G ;
LEE, SL ;
PAUL, DM ;
MOOK, HA ;
YETHIRAJ, M ;
KES, PH ;
LI, TW ;
MENOVSKY, AA ;
TARNAWSKI, Z ;
MORTENSEN, K .
NATURE, 1993, 365 (6445) :407-411
[5]   New features in the vortex phase diagram of YBa2Cu3O7-delta [J].
Deligiannis, K ;
deGroot, PAJ ;
Oussena, M ;
Pinfold, S ;
Langan, R ;
Gagnon, R ;
Taillefer, L .
PHYSICAL REVIEW LETTERS, 1997, 79 (11) :2121-2124
[6]   Irreversibility, mechanical entanglement and thermal melting in superconducting vortex crystals with point impurities [J].
Ertas, D ;
Nelson, DR .
PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 1996, 272 (1-2) :79-86
[7]   Possible new vortex matter phases in Bi2Sr2CaCu2O8 [J].
Fuchs, DT ;
Zeldov, E ;
Tamegai, T ;
Ooi, S ;
Rappaport, M ;
Shtrikman, H .
PHYSICAL REVIEW LETTERS, 1998, 80 (22) :4971-4974
[8]   Abrupt change of Josephson plasma frequency at the phase boundary of the Bragg glass in Bi2Sr2CaCu2O8+δ [J].
Gaifullin, MB ;
Matsuda, Y ;
Chikumoto, N ;
Shimoyama, J ;
Kishio, K .
PHYSICAL REVIEW LETTERS, 2000, 84 (13) :2945-2948
[9]   ELASTIC THEORY OF PINNED FLUX LATTICES [J].
GIAMARCHI, T ;
LEDOUSSAL, P .
PHYSICAL REVIEW LETTERS, 1994, 72 (10) :1530-1533
[10]   Transient vortex states in Bi2Sr2CaCu2O8+δ crystals [J].
Giller, D ;
Shaulov, A ;
Tamegai, T ;
Yeshurun, Y .
PHYSICAL REVIEW LETTERS, 2000, 84 (16) :3698-3701