Inversion of terrestrial ecosystem model parameter values against eddy covariance measurements by Monte Carlo sampling

被引:159
作者
Knorr, W
Kattge, J
机构
[1] Univ Bristol, Dept Earth Sci, QUEST, Bristol BS8 1RJ, Avon, England
[2] Max Planck Inst Biogeochem, D-07745 Jena, Germany
关键词
carbon cycle; climate change; ecosystem models; eddy covariance; Monte Carlo; parameter estimation; photosynthesis; probability density function; respiration;
D O I
10.1111/j.1365-2486.2005.00977.x
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
Effective measures to counter the rising levels of carbon dioxide in the Earth's atmosphere require that we better understand the functioning of the global carbon cycle. Uncertainties about, in particular, the terrestrial carbon cycle's response to climate change remain high. We use a well-known stochastic inversion technique originally developed in nuclear physics, the Metropolis algorithm, to determine the full probability density functions (PDFs) of parameters of a terrestrial ecosystem model. By thus assimilating half-hourly eddy covariance measurements of CO2 and water fluxes, we can substantially reduce the uncertainty of approximately five model parameters, depending on prior uncertainties. Further analysis of the posterior PDF shows that almost all parameters are nearly Gaussian distributed, and reveals some distinct groups of parameters that are constrained together. We show that after assimilating only 7 days of measurements, uncertainties for net carbon uptake over 2 years for the forest site can be substantially reduced, with the median estimate in excellent agreement with measurements.
引用
收藏
页码:1333 / 1351
页数:19
相关论文
共 39 条
[1]   COUPLED PHOTOSYNTHESIS-STOMATAL CONDUCTANCE MODEL FOR LEAVES OF C4 PLANTS [J].
COLLATZ, GJ ;
RIBAS-CARBO, M ;
BERRY, JA .
AUSTRALIAN JOURNAL OF PLANT PHYSIOLOGY, 1992, 19 (05) :519-538
[2]   Markov chain Monte Carlo convergence diagnostics: A comparative review [J].
Cowles, MK ;
Carlin, BP .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1996, 91 (434) :883-904
[3]   Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model [J].
Cox, PM ;
Betts, RA ;
Jones, CD ;
Spall, SA ;
Totterdell, IJ .
NATURE, 2000, 408 (6809) :184-187
[4]   Global response of terrestrial ecosystem structure and function to CO2 and climate change:: results from six dynamic global vegetation models [J].
Cramer, W ;
Bondeau, A ;
Woodward, FI ;
Prentice, IC ;
Betts, RA ;
Brovkin, V ;
Cox, PM ;
Fisher, V ;
Foley, JA ;
Friend, AD ;
Kucharik, C ;
Lomas, MR ;
Ramankutty, N ;
Sitch, S ;
Smith, B ;
White, A ;
Young-Molling, C .
GLOBAL CHANGE BIOLOGY, 2001, 7 (04) :357-373
[5]   Comparing global models of terrestrial net primary productivity (NPP): overview and key results [J].
Cramer, W ;
Kicklighter, DW ;
Bondeau, A ;
Moore, B ;
Churkina, G ;
Nemry, B ;
Ruimy, A ;
Schloss, AL .
GLOBAL CHANGE BIOLOGY, 1999, 5 :1-15
[6]   The carbon uptake of a mid latitude pine forest growing on sandy soil [J].
Dolman, AJ ;
Moors, EJ ;
Elbers, JA .
AGRICULTURAL AND FOREST METEOROLOGY, 2002, 111 (03) :157-170
[7]   A BIOCHEMICAL-MODEL OF PHOTOSYNTHETIC CO2 ASSIMILATION IN LEAVES OF C-3 SPECIES [J].
FARQUHAR, GD ;
CAEMMERER, SV ;
BERRY, JA .
PLANTA, 1980, 149 (01) :78-90
[8]   How positive is the feedback between climate change and the carbon cycle? [J].
Friedlingstein, P ;
Dufresne, JL ;
Cox, PM ;
Rayner, P .
TELLUS SERIES B-CHEMICAL AND PHYSICAL METEOROLOGY, 2003, 55 (02) :692-700
[9]  
Gelman A, 2013, BAYESIAN DATA ANAL, DOI DOI 10.1201/9780429258411
[10]  
Gelman A., 1992, BAYESIAN STAT, V4, P625