Water Splitting on Composite Plasmonic-Metal/Semiconductor Photoelectrodes: Evidence for Selective Plasmon-Induced Formation of Charge Carriers near the Semiconductor Surface

被引:754
作者
Ingram, David B. [1 ]
Linic, Suljo [1 ]
机构
[1] Univ Michigan, Dept Chem Engn, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
PHOTOCATALYTIC ACTIVITY; OPTICAL-PROPERTIES; AG NANOSTRUCTURES; TIO2; NANOPARTICLES; MECHANISMS; PHOTOCHEMISTRY; SHAPE; SIZE;
D O I
10.1021/ja200086g
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A critical factor limiting the rates of photocatalytic reactions, including water splitting, on oxide semiconductors is the high rate of charge-carrier recombination. In this contribution, we demonstrate that this issue can be alleviated significantly by combining a semiconductor photocatalyst with tailored plasmonic-metal nanostructures. Plasmonic nanostructures support the formation of resonant surface plasmons in response to a photon flux, localizing electromagnetic energy close to their surfaces. We present evidence that the interaction of localized electric fields with the neighboring semiconductor allows for the selective formation of electron/hole (e(-)/h(+)) pairs in the near-surface region of the semiconductor. The advantage of the formation of e(-)/h(+) pairs near the semiconductor surface is that these charge carriers are readily separated from each other and easily migrate to the surface, where they can perform photocatalytic transformations.
引用
收藏
页码:5202 / 5205
页数:4
相关论文
共 24 条
[1]   Enhancement and quenching of single-molecule fluorescence [J].
Anger, P ;
Bharadwaj, P ;
Novotny, L .
PHYSICAL REVIEW LETTERS, 2006, 96 (11)
[2]   Visible-light photocatalysis in nitrogen-doped titanium oxides [J].
Asahi, R ;
Morikawa, T ;
Ohwaki, T ;
Aoki, K ;
Taga, Y .
SCIENCE, 2001, 293 (5528) :269-271
[3]   A plasmonic photocatalyst consisting of sliver nanoparticles embedded in titanium dioxide [J].
Awazu, Koichi ;
Fujimaki, Makoto ;
Rockstuhl, Carsten ;
Tominaga, Junji ;
Murakami, Hirotaka ;
Ohki, Yoshimichi ;
Yoshida, Naoya ;
Watanabe, Toshiya .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (05) :1676-1680
[4]   Translucent thin film Fe2O3 photoanodes for efficient water splitting by sunlight:: Nanostructure-directing effect of Si-doping [J].
Cesar, I ;
Kay, A ;
Martinez, JAG ;
Grätzel, M .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (14) :4582-4583
[5]   Enhancing Photochemical Activity of Semiconductor Nanoparticles with Optically Active Ag Nanostructures: Photochemistry Mediated by Ag Surface Plasmons [J].
Christopher, Phillip ;
Ingram, David B. ;
Linic, Suljo .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (19) :9173-9177
[6]   Shape- and Size-Specific Chemistry of Ag Nanostructures in Catalytic Ethylene Epoxidation [J].
Christopher, Phillip ;
Linic, Suljo .
CHEMCATCHEM, 2010, 2 (01) :78-83
[7]   Some interesting properties of metals confined in time and nanometer space of different shapes [J].
El-Sayed, MA .
ACCOUNTS OF CHEMICAL RESEARCH, 2001, 34 (04) :257-264
[8]   ELECTROCHEMICAL PHOTOLYSIS OF WATER AT A SEMICONDUCTOR ELECTRODE [J].
FUJISHIMA, A ;
HONDA, K .
NATURE, 1972, 238 (5358) :37-+
[9]   TiO2 photocatalysis and related surface phenomena [J].
Fujishima, Akira ;
Zhang, Xintong ;
Tryk, Donald A. .
SURFACE SCIENCE REPORTS, 2008, 63 (12) :515-582
[10]   Theory of plasmon-enhanced Forster energy transfer in optically excited semiconductor and metal nanoparticles [J].
Govorov, Alexander O. ;
Lee, Jaebeom ;
Kotov, Nicholas A. .
PHYSICAL REVIEW B, 2007, 76 (12)