Synthesis of in situ network-like vapor-grown carbon fiber improved LiFePO4 cathode materials by microwave pyrolysis chemical vapor deposition

被引:11
作者
Deng, F. [2 ]
Zeng, X. R. [1 ,3 ]
Zou, J. Z. [1 ,3 ]
Huang, J. F. [3 ]
Xiong, X. B. [1 ,3 ]
Li, X. H. [1 ,3 ]
机构
[1] Shenzhen Univ, Coll Mat Sci & Engn, Shenzhen 518060, Peoples R China
[2] NW Polytech Univ, Sch Mat Sci & Engn, Xian 710072, Peoples R China
[3] Shenzhen Key Lab Special Funct Mat, Shenzhen 518060, Peoples R China
关键词
Electrode materials; Gas-solid reactions; Vapor deposition; Microstructure; Scanning electron microscopy; LITHIUM-ION BATTERIES; ELECTROCHEMICAL PROPERTIES; ELECTRODE MATERIALS; COMPOSITE CATHODE; INTERCALATION; PERFORMANCE; PHOSPHATES; TRANSPORT; NANOTUBES; FILMS;
D O I
10.1016/j.jallcom.2011.06.054
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The low electronic conductivity of LiFePO4 currently limits its use in lithium ion batteries. In order to solve the problem, in situ network-like vapor-grown carbon fiber (VGCF) improved LiFePO4 cathode materials have been prepared in one step by microwave pyrolysis chemical vapor deposition. The phase, microstructure and electrochemical performances of the composites were investigated. Compared with the cathodes without in situ VGCF, the initial discharge capacity of the composite electrode increases from 84 mAh g(-1) to 123 mAh g(-1) at 3.0 C rate, and the charge transfer resistance varies from 420 Omega to 75 Omega. The possible reasons of those are proposed. Crown Copyright (C) 2011 Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:L324 / L327
页数:4
相关论文
共 25 条
[1]  
[Anonymous], 196 M EL SOC HAW US
[2]   Synthesis and electrochemical analysis of vapor-deposited carbon-coated LiFePO4 [J].
Belharouak, I ;
Johnson, C ;
Amine, K .
ELECTROCHEMISTRY COMMUNICATIONS, 2005, 7 (10) :983-988
[3]   Raman and FTIR spectroscopic study of LixFePO4 (0 ≤ x ≤ 1) [J].
Burba, CM ;
Frech, R .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2004, 151 (07) :A1032-A1038
[4]  
Chen CC, 2004, 206 M EL SOC HON HI, P413
[5]   Effects of intercalation-induced stress on lithium transport through porous LiCoO2 electrode [J].
Choi, YM ;
Pyun, SI .
SOLID STATE IONICS, 1997, 99 (3-4) :173-183
[6]   Electronically conductive phospho-olivines as lithium storage electrodes [J].
Chung, SY ;
Bloking, JT ;
Chiang, YM .
NATURE MATERIALS, 2002, 1 (02) :123-128
[7]   A novel concept for the synthesis of an improved LiFePO4 lithium battery cathode [J].
Croce, F ;
D'Epifanio, A ;
Hassoun, J ;
Deptula, A ;
Olczac, T ;
Scrosati, B .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2002, 5 (03) :A47-A50
[8]   Vapor-grown carbon fibers (VGCFs) - Basic properties and their battery applications [J].
Endo, M ;
Kim, YA ;
Hayashi, T ;
Nishimura, K ;
Matusita, T ;
Miyashita, K ;
Dresselhaus, MS .
CARBON, 2001, 39 (09) :1287-1297
[9]   Lithium storage behavior for various kinds of carbon anodes in Li ion secondary battery [J].
Endo, M ;
Nishimura, Y ;
Takahashi, T ;
Takeuchi, K ;
Dresselhaus, MS .
JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 1996, 57 (6-8) :725-728
[10]   Transport properties of LiMn2O4 electrode materials for lithium-ion batteries [J].
Guan, J ;
Liu, ML .
SOLID STATE IONICS, 1998, 110 (1-2) :21-28