AtATG18a is required for the formation of autophagosomes during nutrient stress and senescence in Arabidopsis thaliana

被引:307
作者
Xiong, Y
Contento, AL
Bassham, DC
机构
[1] Iowa State Univ, Dept Genet Dev & Cell Biol, Ames, IA 50011 USA
[2] Iowa State Univ, Interdept Plant Physiol Program, Ames, IA 50011 USA
[3] Iowa State Univ, Inst Plant Sci, Ames, IA 50011 USA
关键词
autophagy; senescence; vacuole; starvation; ATG18; autophagosome;
D O I
10.1111/j.1365-313X.2005.02397.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Vacuolar autophagy is a major pathway by which eukaryotic cells degrade macromolecules, either to remove damaged or unnecessary proteins, or to produce respiratory substrates and raw materials to survive periods of nutrient deficiency. During autophagy, a double membrane forms around cytoplasmic components to generate an autophagosome, which is transported to the vacuole. The outer membrane fuses with the vacuole or lysosome, and the inner membrane and its contents are degraded by vacuolar or lysosomal hydrolases. We have identified a small gene family in Arabidopsis thaliana, members of which show sequence similarity to the yeast autophagy gene ATG18. Members of the AtATG18 gene family are differentially expressed in response to different growth conditions, and one member of this family, AtATG18a, is induced both during sucrose and nitrogen starvation and during senescence. RNA interference was used to generate transgenic lines with reduced AtATG18a expression. These lines show hypersensitivity to sucrose and nitrogen starvation and premature senescence, both during natural senescence of leaves and in a detached leaf assay. Staining with the autophagosome-specific fluorescent dye monodansylcadaverine revealed that, unlike wild-type plants, AtATG18a RNA interference plants are unable to produce autophagosomes in response to starvation or senescence conditions. We conclude that the AtATG18a protein is likely to be required for autophagosome formation in Arabidopsis.
引用
收藏
页码:535 / 546
页数:12
相关论文
共 51 条
  • [1] Dissection of autophagosome biogenesis into distinct nucleation and expansion steps
    Abeliovich, H
    Dunn, WA
    Kim, J
    Klionsky, DJ
    [J]. JOURNAL OF CELL BIOLOGY, 2000, 151 (05) : 1025 - 1033
  • [2] BASIC LOCAL ALIGNMENT SEARCH TOOL
    ALTSCHUL, SF
    GISH, W
    MILLER, W
    MYERS, EW
    LIPMAN, DJ
    [J]. JOURNAL OF MOLECULAR BIOLOGY, 1990, 215 (03) : 403 - 410
  • [3] Ultrastructural and biochemical characterization of autophagy in higher plant cells subjected to carbon deprivation: Control by the supply of mitochondria with respiratory substrates
    Aubert, S
    Gout, E
    Bligny, R
    MartyMazars, D
    Barrieu, F
    Alabouvette, J
    Marty, F
    Douce, R
    [J]. JOURNAL OF CELL BIOLOGY, 1996, 133 (06) : 1251 - 1263
  • [4] Mai1p is essential for maturation of proaminopeptidase I but not for autophagy
    Barth, H
    Meiling-Wesse, K
    Epple, UD
    Thumm, M
    [J]. FEBS LETTERS, 2002, 512 (1-3) : 173 - 179
  • [5] Autophagy and the cytoplasm to vacuole targeting pathway both require Aut10p
    Barth, H
    Meiling-Wesse, K
    Epple, UD
    Thumm, M
    [J]. FEBS LETTERS, 2001, 508 (01) : 23 - 28
  • [6] Bateman A, 2004, NUCLEIC ACIDS RES, V32, pD138, DOI [10.1093/nar/gkp985, 10.1093/nar/gkr1065, 10.1093/nar/gkh121]
  • [7] Weighted neighbor joining: A likelihood-based approach to distance-based phylogeny reconstruction
    Bruno, WJ
    Socci, ND
    Halpern, AL
    [J]. MOLECULAR BIOLOGY AND EVOLUTION, 2000, 17 (01) : 189 - 197
  • [8] CHAPMAN DJ, 1988, EXPT PHYCOLOGY, P93
  • [9] EXPRESSION OF ALPHA-AMYLASES, CARBOHYDRATE-METABOLISM, AND AUTOPHAGY IN CULTURED RICE CELLS IS COORDINATELY REGULATED BY SUGAR NUTRIENT
    CHEN, MH
    LIU, LF
    CHEN, YR
    WU, HK
    YU, SM
    [J]. PLANT JOURNAL, 1994, 6 (05) : 625 - 636
  • [10] Specific and heritable genetic interference by double-stranded RNA in Arabidopsis thaliana
    Chuang, CF
    Meyerowitz, EM
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (09) : 4985 - 4990