Biogeochemical controls and feedbacks on ocean primary production

被引:2026
作者
Falkowski, PG [1 ]
Barber, RT
Smetacek, V
机构
[1] Rutgers State Univ, Inst Marine & Coastal Sci, New Brunswick, NJ 08901 USA
[2] Alfred Wegener Inst Polar & Marine Res, D-27570 Bremerhaven, Germany
[3] Duke Univ, Div Earth & Ocean Sci, Beaufort, NC 28516 USA
关键词
D O I
10.1126/science.281.5374.200
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Changes in oceanic primary production, Linked to changes in the network of global biogeochemical cycles, have profoundly influenced the geochemistry of Earth for over 3 billion years. In the contemporary ocean, photosynthetic carbon fixation by marine phytoplankton Leads to formation of similar to 45 gigatons of organic carbon per annum, of which 16 gigatons are exported to the ocean interior. Changes in the magnitude of total and export production can strongly influence atmospheric CO, levels land hence climate) on geological time scales, as well as set upper bounds for sustainable fisheries harvest. The two fluxes are critically dependent on geophysical processes that determine mixed-layer depth, nutrient fluxes to and within the ocean, and food-web structure. Because the average turnover time of phytoplankton carbon in the ocean is on the order of a week or less, total and export production are extremely sensitive to external forcing and consequently are seldom in steady state. Elucidating the biogeochemical controls and feedbacks on primary production is essential to understanding how oceanic biota responded to and affected natural climatic variability in the geological past, and will respond to anthropogenically influenced changes in coming decades. One of the most crucial feedbacks results from changes in radiative forcing on the hydrological cycle, which influences the aeolian iron flux and, in turn, affects nitrogen fixation and primary production in the oceans.
引用
收藏
页码:200 / 206
页数:7
相关论文
共 103 条
[1]   REDFIELD RATIOS OF REMINERALIZATION DETERMINED BY NUTRIENT DATA-ANALYSIS [J].
ANDERSON, LA ;
SARMIENTO, JL .
GLOBAL BIOGEOCHEMICAL CYCLES, 1994, 8 (01) :65-80
[2]  
[Anonymous], NATO ASI SER
[3]   FURTHER MEASUREMENTS OF PRIMARY PRODUCTION USING A LARGE-VOLUME PLASTIC SPHERE [J].
ANTIA, NJ ;
MCALLISTER, CD ;
PARSONS, TR ;
STEPHENS, K ;
STRICKLAND, JDH .
LIMNOLOGY AND OCEANOGRAPHY, 1963, 8 (02) :166-183
[4]   Oceanic primary production .2. Estimation at global scale from satellite (coastal zone color scanner) chlorophyll [J].
Antoine, D ;
Andre, JM ;
Morel, A .
GLOBAL BIOGEOCHEMICAL CYCLES, 1996, 10 (01) :57-69
[5]   EFFECT OF DEEP-SEA SEDIMENTARY CALCITE PRESERVATION ON ATMOSPHERIC CO2 CONCENTRATION [J].
ARCHER, D ;
MAIERREIMER, E .
NATURE, 1994, 367 (6460) :260-263
[6]   Microbial control of oceanic carbon flux: The plot thickens [J].
Azam, F .
SCIENCE, 1998, 280 (5364) :694-696
[7]   THE ECOLOGICAL ROLE OF WATER-COLUMN MICROBES IN THE SEA [J].
AZAM, F ;
FENCHEL, T ;
FIELD, JG ;
GRAY, JS ;
MEYERREIL, LA ;
THINGSTAD, F .
MARINE ECOLOGY PROGRESS SERIES, 1983, 10 (03) :257-263
[8]   GLOBAL CLIMATE CHANGE AND INTENSIFICATION OF COASTAL OCEAN UPWELLING [J].
BAKUN, A .
SCIENCE, 1990, 247 (4939) :198-201
[9]  
BANSE K, 1992, ENVIR SCI R, V43, P409
[10]   REGULATION OF PRIMARY PRODUCTIVITY RATE IN THE EQUATORIAL PACIFIC [J].
BARBER, RT ;
CHAVEZ, FP .
LIMNOLOGY AND OCEANOGRAPHY, 1991, 36 (08) :1803-1815