The discontinuity set of solutions of the TV denoising problem and some extensions

被引:99
作者
Caselles, Vicent [1 ]
Chambolle, Antonin [2 ]
Novaga, Matteo [3 ]
机构
[1] Univ Pompeu Fabra, Dept Tecnol, Barcelona 08003, Spain
[2] Ecole Polytech, CNRS, CMAP, F-91128 Palaiseau, France
[3] Univ Pisa, Dipartimento Matemat, I-56127 Pisa, Italy
关键词
total variation; jump discontinuity set; regularity;
D O I
10.1137/070683003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The main purpose of this paper is to prove that the jump discontinuity set of the solution of the total variation based denoising problem is contained in the jump set of the datum to be denoised. We also prove some extensions of this result for the total variation minimization flow, for anisotropic norms, and for some more general convex functionals, which include the minimal surface equation case and its anisotropic extensions.
引用
收藏
页码:879 / 894
页数:16
相关论文
共 33 条
[1]  
ALLARD WK, IN PRESS SIAM J MATH
[2]   CURVATURE-DRIVEN FLOWS - A VARIATIONAL APPROACH [J].
ALMGREN, F ;
TAYLOR, JE ;
WANG, L .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1993, 31 (02) :387-437
[3]  
Alter F, 2005, INTERFACE FREE BOUND, V7, P29
[4]   A characterization of convex calibrable sets in IRN [J].
Alter, F ;
Caselles, V ;
Chambolle, A .
MATHEMATISCHE ANNALEN, 2005, 332 (02) :329-366
[5]  
ALTER F, 2007, UNIQUENESS CHEEGER S
[6]  
AMBROSIO L, 1997, APPUNTI CORSI TENUTT
[7]  
AMBROSIO L., 2000, OXFORD MATH MONOGR, V18
[8]   The Dirichlet problem for the total variation flow [J].
Andreu, F ;
Ballester, C ;
Caselles, V ;
Mazón, JM .
JOURNAL OF FUNCTIONAL ANALYSIS, 2001, 180 (02) :347-403
[9]  
Andreu F., 2004, PROGR MATH
[10]  
Andreu F, 2001, DIFFERENTIAL INTEGRA, V14, P321