Bagging predictors

被引:6280
作者
Breiman, L
机构
[1] Statistics Department, University of California, Berkeley
关键词
aggregation; bootstrap; averaging; combining;
D O I
10.1007/bf00058655
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Bagging predictors is a method for generating multiple versions of a predictor and using these to gel an aggregated predictor. The aggregation averages over the versions when predicting a numerical outcome and does a plurality vote when predicting a class. The multiple versions are formed by making bootstrap replicates of the learning set and using these as new learning sets. Tests on real and simulated data sets using classification and regression trees and subset selection in linear regression show that bagging can give substantial gains in accuracy. The vital element is the instability of the prediction method. If perturbing the learning set can cause significant changes in the predictor constructed, then bagging can improve accuracy.
引用
收藏
页码:123 / 140
页数:18
相关论文
共 16 条
  • [1] Belsley DA, 1980, Regression diagnostics: Identifying influential data and sources of collinearity
  • [2] SmcHD1, containing a structural-maintenance-of-chromosomes hinge domain, has a critical role in X inactivation
    Blewitt, Marnie E.
    Gendrel, Anne-Valerie
    Pang, Zhenyi
    Sparrow, Duncan B.
    Whitelaw, Nadia
    Craig, Jeffrey M.
    Apedaile, Anwyn
    Hilton, Douglas J.
    Dunwoodie, Sally L.
    Brockdorff, Neil
    Kay, Graham F.
    Whitelaw, Emma
    [J]. NATURE GENETICS, 2008, 40 (05) : 663 - 669
  • [3] SUBMODEL SELECTION AND EVALUATION IN REGRESSION - THE X-RANDOM CASE
    BREIMAN, L
    SPECTOR, P
    [J]. INTERNATIONAL STATISTICAL REVIEW, 1992, 60 (03) : 291 - 319
  • [4] BREIMAN L, 1985, J AM STAT ASSOC, V80, P580, DOI 10.2307/2288473
  • [5] BREIMAN L, 1994, IN PRESS ANN STAT
  • [6] BUNTINE W, 1991, LEARNING CLASSIFICAT, P182
  • [7] DIETTERICH TG, 1991, P 9 NAT C ART INT AA
  • [8] Efron B., 1993, An Introduction to the Bootstrap, DOI 10.1007/978-1-4899-4541-9
  • [9] MULTIVARIATE ADAPTIVE REGRESSION SPLINES
    FRIEDMAN, JH
    [J]. ANNALS OF STATISTICS, 1991, 19 (01) : 1 - 67
  • [10] HEATH D, 1993, IJCAI-93, VOLS 1 AND 2, P1002