Long-term conservation of adiabatic invariants by using symplectic integrators

被引:12
作者
Shimada, M [1 ]
Yoshida, H [1 ]
机构
[1] NATL ASTRON OBSERV, MITAKA, TOKYO 181, JAPAN
关键词
adiabatic invariants; celestial mechanics; numerical methods; stars; stellar dynamics; symplectic integrator;
D O I
10.1093/pasj/48.1.147
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The advantage of symplectic integrators compared with non-symplectic Runge-Kutta integrators is shown in the computation of adiabatic invariants. Symplectic integrators do not produce a secular growth of the error, contrary to non-symplectic Runge-Kutta integrators. Furthermore, we compared the performance of 2nd, 4th, and 6th order symplectic integrators and obtained the numerical results that show SI6 has the best performance when the numerical error in the adiabatic invariants must be below 0.03%. The model systems that we used are a one-dimensional harmonic oscillator with a slowly varying frequency and a one-particle system in a slowly varying isochrone potential.
引用
收藏
页码:147 / 155
页数:9
相关论文
共 14 条
  • [1] [Anonymous], 1991, CELEST MECH DYN ASTR
  • [2] BINNEY J, 1987, GALACTIC DYNAMICS, pCH2
  • [3] A SYMPLECTIC INTEGRATION ALGORITHM FOR SEPARABLE HAMILTONIAN FUNCTIONS
    CANDY, J
    ROZMUS, W
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1991, 92 (01) : 230 - 256
  • [4] SYMPLECTIC INTEGRATORS FOR LONG-TERM INTEGRATIONS IN CELESTIAL MECHANICS
    Gladman, Brett
    Duncan, Martin
    Candy, Jeff
    [J]. CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 1991, 52 (03) : 221 - 240
  • [5] GOLDSTEIN H, 1980, CLASSICAL MECHANICS, pCH11
  • [6] HAIRER E, 1977, NUMER MATH, V27, P283, DOI 10.1007/BF01396178
  • [7] HAIRER E, 1976, NUMER MATH, V25, P383, DOI 10.1007/BF01396335
  • [8] HAIRER E, 1993, SOLVING ORDINARY DIF, pCH2
  • [9] LICHTENBERG AJ, 1983, REGULAR STOCHASTIC M, pCH2
  • [10] PRESS WH, 1993, NUMERICAL RECIPES, pCH15