Agreement of stochastic soliton formalism with second-quantized and configuration-space models

被引:8
作者
Fini, JM [1 ]
Hagelstein, PL [1 ]
Haus, HA [1 ]
机构
[1] MIT, Elect Res Lab, Cambridge, MA 02139 USA
来源
PHYSICAL REVIEW A | 1998年 / 57卷 / 06期
关键词
D O I
10.1103/PhysRevA.57.4842
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The stochastic theory presented by Drummond, Gardiner, and Walls [Phys. Rev. A 24, 914 (1981)] is an interesting approach to problems in quantum optics. In this theory, an exact, quantum evolution is written in terms of classical functions (not operators) driven by explicit, quantum noise. We examine the origin of uncertainty in the formalism through the simple example of a single, nonlinear oscillator. We then test the stochastic theory applied to the problem of soliton propagation. We extend the linearized stochastic model by computing analytically quantum uncertainties in the four basic soliton parameters: photon number, momentum, phase, and position. Agreement with second-quantized and configuration-space soliton theories verifies the stochastic formalism.
引用
收藏
页码:4842 / 4853
页数:12
相关论文
共 14 条
[1]   QUASI-PROBABILITY METHODS FOR NON-LINEAR CHEMICAL AND OPTICAL-SYSTEMS [J].
DRUMMOND, PD ;
GARDINER, CW ;
WALLS, DF .
PHYSICAL REVIEW A, 1981, 24 (02) :914-926
[2]   QUANTUM-FIELD THEORY OF SQUEEZING IN SOLITONS [J].
DRUMMOND, PD ;
CARTER, SJ .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1987, 4 (10) :1565-1573
[3]  
Gardiner C. W., 1985, HDB STOCHASTIC METHO, V3
[4]  
Glauber R. J., 1969, QUANTUM OPTICS
[5]   RANDOM-WALK OF COHERENTLY AMPLIFIED SOLITONS IN OPTICAL FIBER TRANSMISSION [J].
GORDON, JP ;
HAUS, HA .
OPTICS LETTERS, 1986, 11 (10) :665-667
[6]   Application of a photon configuration-space model to soliton propagation in a fiber [J].
Hagelstein, PL .
PHYSICAL REVIEW A, 1996, 54 (03) :2426-2438
[7]   QUANTUM-THEORY OF SOLITON SQUEEZING - A LINEARIZED APPROACH [J].
HAUS, HA ;
LAI, Y .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1990, 7 (03) :386-392
[8]  
HAUS HA, UNPUB
[9]   QUANTUM-THEORY OF SOLITONS IN OPTICAL FIBERS .1. TIME-DEPENDENT HARTREE APPROXIMATION [J].
LAI, Y ;
HAUS, HA .
PHYSICAL REVIEW A, 1989, 40 (02) :844-853
[10]   QUANTUM-THEORY OF SOLITONS IN OPTICAL FIBERS .2. EXACT SOLUTION [J].
LAI, Y ;
HAUS, HA .
PHYSICAL REVIEW A, 1989, 40 (02) :854-866