On adaptive synchronization and control of nonlinear dynamical systems

被引:186
作者
Wu, CW [1 ]
Yang, T [1 ]
Chua, LO [1 ]
机构
[1] UNIV CALIF BERKELEY,DEPT ELECT ENGN & COMP SCI,BERKELEY,CA 94720
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 1996年 / 6卷 / 03期
关键词
D O I
10.1142/S0218127496000187
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the synchronization of two coupled nonlinear, in particular chaotic, systems which are not identical. We show how adaptive controllers can be used to adjust the parameters of the systems such that the two systems will synchronize. We use a Lyapunov function approach to prove a global result which shows that our choice of controllers will synchronize the two systems. We show how it is related to Huberman-Lumer adaptive control and the LMS adaptive algorithm. We illustrate the applicability of this method using Chua's oscillators as the chaotic systems. We choose parameters for the two systems which are orders of magnitude apart to illustrate the effectiveness of the adaptive controllers. Finally, we discuss the role of adaptive synchronization in the context of secure and spread spectrum communication systems. In particular, we show how several signals can be encoded onto a single scalar chaotic carrier signal.
引用
收藏
页码:455 / 471
页数:17
相关论文
共 18 条
  • [1] CELKA P, 1995, IEEE INT SYMP CIRC S, P692, DOI 10.1109/ISCAS.1995.521608
  • [2] CHUA LO, 1996, INT J BIFURCATION CH, V6
  • [3] CHAOS SHIFT KEYING - MODULATION AND DEMODULATION OF A CHAOTIC CARRIER USING SELF-SYNCHRONIZING CHUA CIRCUITS
    DEDIEU, H
    KENNEDY, MP
    HASLER, M
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-ANALOG AND DIGITAL SIGNAL PROCESSING, 1993, 40 (10): : 634 - 642
  • [4] DIBERNARDO M, 1995, ADAPTIVE APPROACH CO
  • [5] STABILITY THEORY OF SYNCHRONIZED MOTION IN COUPLED-OSCILLATOR SYSTEMS
    FUJISAKA, H
    YAMADA, T
    [J]. PROGRESS OF THEORETICAL PHYSICS, 1983, 69 (01): : 32 - 47
  • [6] ANALYSIS AND SYNTHESIS OF SYNCHRONOUS PERIODIC AND CHAOTIC SYSTEMS
    HE, R
    VAIDYA, PG
    [J]. PHYSICAL REVIEW A, 1992, 46 (12): : 7387 - 7392
  • [7] DYNAMICS OF ADAPTIVE SYSTEMS
    HUBERMAN, BA
    LUMER, E
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1990, 37 (04): : 547 - 550
  • [8] SYNCHRONIZATION BY FEEDBACK AND ADAPTIVE-CONTROL
    JOHN, JK
    AMRITKAR, RE
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1994, 4 (06): : 1687 - 1695
  • [9] Lakshmikantham V., 1993, STABILITY ANAL TERMS, DOI 10.1142/2018
  • [10] Parlitz U, 1992, INT J BIFURCAT CHAOS, V2, P973, DOI 10.1142/S0218127492000823