Manipulating Broad-Spectrum Disease Resistance by Suppressing Pathogen-Induced Auxin Accumulation in Rice

被引:220
作者
Fu, Jing [1 ]
Liu, Hongbo [1 ]
Li, Yu [1 ]
Yu, Huihui [1 ]
Li, Xianghua [1 ]
Xiao, Jinghua [1 ]
Wang, Shiping [1 ]
机构
[1] Huazhong Agr Univ, Natl Key Lab Crop Genet Improvement, Natl Ctr Plant Gene Res Wuhan, Wuhan 430070, Peoples R China
基金
中国国家自然科学基金;
关键词
BACTERIAL-BLIGHT RESISTANCE; DEFENSE-RESPONSIVE GENES; QUANTITATIVE TRAIT LOCI; SALICYLIC-ACID; ARABIDOPSIS; EXPRESSION; PLANTS; FAMILY; GROWTH; BLAST;
D O I
10.1104/pp.110.163774
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Breeding crops with the quality of broad-spectrum disease resistance using genetic resources is one of the principal goals of crop improvement. However, the molecular mechanism of broad-spectrum resistance remains largely unknown. Here, we show that GH3-2, encoding an indole-3-acetic acid (IAA)-amido synthetase, mediates a broad-spectrum resistance to bacterial Xanthomonas oryzae pv oryzae and Xanthomonas oryzae pv oryzicola and fungal Magnaporthe grisea in rice (Oryza sativa). IAA, the major form of auxin in rice, results in rice more vulnerable to the invasion of different types of pathogens, which is at least partly due to IAA-induced loosening of the cell wall, the natural protective barrier of plant cells to invaders. X. oryzae pv oryzae, X. oryzae pv oryzicola, and M. grisea secrete IAA, which, in turn, may induce rice to synthesize its own IAA at the infection site. IAA induces the production of expansins, the cell wall-loosening proteins, and makes rice vulnerable to pathogens. GH3-2 is likely contributing to a minor quantitative trait locus for broad-spectrum resistance. Activation of GH3-2 inactivates IAA by catalyzing the formation of an IAA-amino acid conjugate, which results in the suppression of expansin genes. Thus, GH3-2 mediates basal resistance by suppressing pathogen-induced IAA accumulation. It is expected that, regulated by a pathogen-induced strong promoter, GH3-2 alone may be used for breeding rice with a broad-spectrum disease resistance.
引用
收藏
页码:589 / 602
页数:14
相关论文
共 63 条
[1]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[2]  
[Anonymous], 2002, STAND EV SYST RIC SE, P56
[3]   A genome-wide meta-analysis of rice blast resistance genes and quantitative trait loci provides new insights into partial and complete resistance [J].
Ballini, Elsa ;
Morel, Jean-Benoit ;
Droc, Gaetan ;
Price, Adam ;
Courtois, Brigitte ;
Notteghem, Jean-Loup ;
Tharreau, Didier .
MOLECULAR PLANT-MICROBE INTERACTIONS, 2008, 21 (07) :859-868
[4]   Role of plant hormones in plant defence responses [J].
Bari, Rajendra ;
Jones, Jonathan D. G. .
PLANT MOLECULAR BIOLOGY, 2009, 69 (04) :473-488
[5]   Expression pattern of a rice disease resistance gene Xa3/Xa26 is differentially regulated by the genetic backgrounds and developmental stages that influence its function [J].
Cao, Yinglong ;
Ding, Xinhua ;
Cai, Meng ;
Zhao, Jing ;
Lin, Yongjun ;
Li, Xianghua ;
Xu, Caiguo ;
Wang, Shiping .
GENETICS, 2007, 177 (01) :523-533
[6]   Role of auxin and gibberellin in citrus canker development and in the transcriptional control of cell-wall remodeling genes modulated by Xanthomonas axonopodis pv. citri [J].
Cernadas, Raul Andres ;
Benedetti, Celso Eduardo .
PLANT SCIENCE, 2009, 177 (03) :190-195
[7]  
Chen CaiHong Chen CaiHong, 2006, Agricultural Sciences in China, V5, P216, DOI 10.1016/S1671-2927(06)60041-2
[8]   Comparative analyses of genomic locations and race specificities of loci for quantitative resistance to Pyricularia grisea in rice and barley [J].
Chen, H ;
Wang, SP ;
Xing, YZ ;
Xu, CG ;
Hayes, PM ;
Zhang, QF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (05) :2544-2549
[9]  
CHEN H, 2001, THESIS HUAZHONG AGR
[10]   New gene for bacterial blight resistance in rice located on chromosome 12 identified from Minghui 63, an elite restorer line [J].
Chen, HL ;
Wang, SP ;
Zhang, QF .
PHYTOPATHOLOGY, 2002, 92 (07) :750-754