The Ginzburg-Landau equations of superconductivity and the one-phase Stefan problem

被引:3
作者
Bronsard, L [1 ]
Stoth, B
机构
[1] McMaster Univ, Dept Math & Stat, Hamilton, ON L8S 4K1, Canada
[2] Univ Bonn, IAM, D-53115 Bonn, Germany
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 1998年 / 15卷 / 03期
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1016/S0294-1449(98)80122-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the time-dependent Ginzburg-Landau model for type I superconductivity in a cylindrically symmetric setting. We show that under appropriate monotonicity properties for the initial data, the singular limit (as the penetration depth tends to zero and the Ginzburg-Landau parameter is kept fixed) is a classical one-phase Stefan problem for the magnetic field H. We combine energy methods with monotonicity properties obtained via maximum principles. (C) Elsevier, Paris.
引用
收藏
页码:371 / 397
页数:27
相关论文
共 12 条
[1]  
[Anonymous], J EXPT THEORETICAL P
[2]   THEORY OF SUPERCONDUCTIVITY [J].
BARDEEN, J ;
COOPER, LN ;
SCHRIEFFER, JR .
PHYSICAL REVIEW, 1957, 108 (05) :1175-1204
[3]   MACROSCOPIC MODELS FOR SUPERCONDUCTIVITY [J].
CHAPMAN, SJ ;
HOWISON, SD ;
OCKENDON, JR .
SIAM REVIEW, 1992, 34 (04) :529-560
[4]   ANALYSIS AND APPROXIMATION OF THE GINZBURG-LANDAU MODEL OF SUPERCONDUCTIVITY [J].
DU, Q ;
GUNZBURGER, MD ;
PETERSON, JS .
SIAM REVIEW, 1992, 34 (01) :54-81
[5]  
DU Q, 1994, APPL ANAL, V53, P1
[6]  
Friedman A., 1992, Asymptotic Analysis, V6, P109
[7]  
GORKOV LP, 1959, ZH EKSP TEOR FIZ, V9, P1364
[8]  
GORKOV LP, 1968, ZH EKSP TEOR FIZ, V27, P328
[9]   PROPAGATION OF A MAGNETIC FIELD INTO A SUPERCONDUCTOR [J].
KELLER, JB .
PHYSICAL REVIEW, 1958, 111 (06) :1497-1499
[10]   Short initial announcements. [J].
Meissner, W ;
Ochsenfeld, R .
NATURWISSENSCHAFTEN, 1933, 21 :787-788