Parallel Poisson Disk Sampling with Spectrum Analysis on Surfaces

被引:86
作者
Bowers, John [1 ]
Wang, Rui [1 ]
Wei, Li-Yi
Maletz, David [1 ]
机构
[1] Univ Massachusetts, Amherst, MA 01003 USA
来源
ACM TRANSACTIONS ON GRAPHICS | 2010年 / 29卷 / 06期
基金
美国国家科学基金会;
关键词
Poisson disk sampling; manifold surface; parallel computation; mesh Laplacian; spectrum analysis; GPU;
D O I
10.1145/1866158.1866188
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The ability to place surface samples with Poisson disk distribution can benefit a variety of graphics applications. Such a distribution satisfies the blue noise property, i.e. lack of low frequency noise and structural bias in the Fourier power spectrum. While many techniques are available for sampling the plane, challenges remain for sampling arbitrary surfaces. In this paper, we present new methods for Poisson disk sampling with spectrum analysis on arbitrary manifold surfaces. Our first contribution is a parallel dart throwing algorithm that generates high-quality surface samples at interactive rates. It is flexible and can be extended to adaptive sampling given a user-specified radius field. Our second contribution is a new method for analyzing the spectral quality of surface samples. Using the spectral mesh basis derived from the discrete mesh Laplacian operator, we extend standard concepts in power spectrum analysis such as radial means and anisotropy to arbitrary manifold surfaces. This provides a way to directly evaluate the spectral distribution quality of surface samples without requiring mesh parameterization. Finally, we implement our Poisson disk sampling algorithm on the GPU, and demonstrate practical applications involving interactive sampling and texturing on arbitrary surfaces.
引用
收藏
页数:10
相关论文
共 45 条
[1]  
Alcantara DA, 2009, ACM T GRAPHIC, V28, DOI [10.1145/1618452.1618500, 10.1145/1618452.1610500]
[2]   Recent advances in mesh morphing [J].
Alexa, M .
COMPUTER GRAPHICS FORUM, 2002, 21 (02) :173-196
[3]  
Alliez P, 2002, ACM T GRAPHIC, V21, P347, DOI 10.1145/566570.566588
[4]  
[Anonymous], 2004, PROC EUROGRAPHICS S, DOI DOI 10.2312/SPBG/SPBG04/049-056
[5]   Capacity-Constrained Point Distributions: A Variant of Lloyd's Method [J].
Balzer, Michael ;
Schloemer, Thomas ;
Deussen, Oliver .
ACM TRANSACTIONS ON GRAPHICS, 2009, 28 (03)
[6]   Fast, Realistic Lighting and Material Design using Nonlinear Cut Approximation [J].
Cheslack-Postava, Ewen ;
Wang, Rui ;
Akerlund, Oskar ;
Pellacini, Fabio .
ACM TRANSACTIONS ON GRAPHICS, 2008, 27 (05)
[7]   Dart Throwing on Surfaces [J].
Cline, D. ;
Jeschke, S. ;
White, K. ;
Razdan, A. ;
Wonka, P. .
COMPUTER GRAPHICS FORUM, 2009, 28 (04) :1217-1226
[8]   STOCHASTIC SAMPLING IN COMPUTER-GRAPHICS [J].
COOK, RL .
ACM TRANSACTIONS ON GRAPHICS, 1986, 5 (01) :51-72
[9]  
DESBRUN M, 2002, VISUALIZATION MATH, V3, P35
[10]   Spectral surface quadrangulation [J].
Dong, Shen ;
Bremer, Peer-Timo ;
Garland, Michael ;
Pascucci, Valerio ;
Hart, John C. .
ACM TRANSACTIONS ON GRAPHICS, 2006, 25 (03) :1057-1066