A Comparison of Approaches to Account for Uncertainty in Analysis of Imputed Genotypes

被引:84
作者
Zheng, Jin [2 ]
Li, Yun [2 ]
Abecasis, Goncalo R. [2 ]
Scheet, Paul [1 ,2 ]
机构
[1] Univ Texas MD Anderson Canc Ctr, Dept Epidemiol, Unit 1340, Houston, TX 77230 USA
[2] Univ Michigan, Dept Biostat, Ctr Stat Genet, Ann Arbor, MI 48109 USA
关键词
GWAS; genotype imputation; mixture models; GENOME-WIDE ASSOCIATION; HAPLOTYPE-PHASE INFERENCE; MISSING-DATA IMPUTATION; LINKAGE DISEQUILIBRIUM; LOCI; VARIANTS; DISEASE; RISK;
D O I
10.1002/gepi.20552
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
The availability of extensively genotyped reference samples, such as "The HapMap" and 1,000 Genomes Project reference panels, together with advances in statistical methodology, have allowed for the imputation of genotypes at single nucleotide polymorphism (SNP) markers that are untyped in a cohort or case-control study. These imputation procedures facilitate the interpretation and meta-analyses of genome-wide association studies. A natural question when implementing these procedures concerns how best to take into account uncertainty in imputed genotypes. Here we compare the performance of the following three strategies: least-squares regression on the "best-guess" imputed genotype; regression on the expected genotype score or "dosage"; and mixture regression models that more fully incorporate posterior probabilities of genotypes at untyped SNPs. Using simulation, we considered a range of sample sizes, minor allele frequencies, and imputation accuracies to compare the performance of the different methods under various genetic models. The mixture models performed the best in the setting of a large genetic effect and low imputation accuracies. However, for most realistic settings, we find that regressing the phenotype on the estimated allelic or genotypic dosage provides an attractive compromise between accuracy and computational tractability. Genet. Epidemiol. 35:102-110, 2011. (C) 2011 Wiley-Liss. Inc.
引用
收藏
页码:102 / 110
页数:9
相关论文
共 23 条
[1]   Genome-wide association defines more than 30 distinct susceptibility loci for Crohn's disease [J].
Barrett, Jeffrey C. ;
Hansoul, Sarah ;
Nicolae, Dan L. ;
Cho, Judy H. ;
Duerr, Richard H. ;
Rioux, John D. ;
Brant, Steven R. ;
Silverberg, Mark S. ;
Taylor, Kent D. ;
Barmada, M. Michael ;
Bitton, Alain ;
Dassopoulos, Themistocles ;
Datta, Lisa Wu ;
Green, Todd ;
Griffiths, Anne M. ;
Kistner, Emily O. ;
Murtha, Michael T. ;
Regueiro, Miguel D. ;
Rotter, Jerome I. ;
Schumm, L. Philip ;
Steinhart, A. Hillary ;
Targan, Stephan R. ;
Xavier, Ramnik J. ;
Libioulle, Cecile ;
Sandor, Cynthia ;
Lathrop, Mark ;
Belaiche, Jacques ;
Dewit, Olivier ;
Gut, Ivo ;
Heath, Simon ;
Laukens, Debby ;
Mni, Myriam ;
Rutgeerts, Paul ;
Van Gossum, Andre ;
Zelenika, Diana ;
Franchimont, Denis ;
Hugot, Jean-Pierre ;
de Vos, Martine ;
Vermeire, Severine ;
Louis, Edouard ;
Cardon, Lon R. ;
Anderson, Carl A. ;
Drummond, Hazel ;
Nimmo, Elaine ;
Ahmad, Tariq ;
Prescott, Natalie J. ;
Onnie, Clive M. ;
Fisher, Sheila A. ;
Marchini, Jonathan ;
Ghori, Jilur .
NATURE GENETICS, 2008, 40 (08) :955-962
[2]   A Unified Approach to Genotype Imputation and Haplotype-Phase Inference for Large Data Sets of Trios and Unrelated Individuals [J].
Browning, Brian L. ;
Browning, Sharon R. .
AMERICAN JOURNAL OF HUMAN GENETICS, 2009, 84 (02) :210-223
[3]   Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering [J].
Browning, Sharon R. ;
Browning, Brian L. .
AMERICAN JOURNAL OF HUMAN GENETICS, 2007, 81 (05) :1084-1097
[4]   Missing data imputation and haplotype phase inference for genome-wide association studies [J].
Browning, Sharon R. .
HUMAN GENETICS, 2008, 124 (05) :439-450
[5]   Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls [J].
Burton, Paul R. ;
Clayton, David G. ;
Cardon, Lon R. ;
Craddock, Nick ;
Deloukas, Panos ;
Duncanson, Audrey ;
Kwiatkowski, Dominic P. ;
McCarthy, Mark I. ;
Ouwehand, Willem H. ;
Samani, Nilesh J. ;
Todd, John A. ;
Donnelly, Peter ;
Barrett, Jeffrey C. ;
Davison, Dan ;
Easton, Doug ;
Evans, David ;
Leung, Hin-Tak ;
Marchini, Jonathan L. ;
Morris, Andrew P. ;
Spencer, Chris C. A. ;
Tobin, Martin D. ;
Attwood, Antony P. ;
Boorman, James P. ;
Cant, Barbara ;
Everson, Ursula ;
Hussey, Judith M. ;
Jolley, Jennifer D. ;
Knight, Alexandra S. ;
Koch, Kerstin ;
Meech, Elizabeth ;
Nutland, Sarah ;
Prowse, Christopher V. ;
Stevens, Helen E. ;
Taylor, Niall C. ;
Walters, Graham R. ;
Walker, Neil M. ;
Watkins, Nicholas A. ;
Winzer, Thilo ;
Jones, Richard W. ;
McArdle, Wendy L. ;
Ring, Susan M. ;
Strachan, David P. ;
Pembrey, Marcus ;
Breen, Gerome ;
St Clair, David ;
Caesar, Sian ;
Gordon-Smith, Katherine ;
Jones, Lisa ;
Fraser, Christine ;
Green, Elain K. .
NATURE, 2007, 447 (7145) :661-678
[6]   Selecting a maximally informative set of single-nucleotide polymorphisms for association analyses using linkage disequilibrium [J].
Carlson, CS ;
Eberle, MA ;
Rieder, MJ ;
Yi, Q ;
Kruglyak, L ;
Nickerson, DA .
AMERICAN JOURNAL OF HUMAN GENETICS, 2004, 74 (01) :106-120
[7]  
Falconer D. S., 1989, Introduction to quantitative genetics.
[8]   A second generation human haplotype map of over 3.1 million SNPs [J].
Frazer, Kelly A. ;
Ballinger, Dennis G. ;
Cox, David R. ;
Hinds, David A. ;
Stuve, Laura L. ;
Gibbs, Richard A. ;
Belmont, John W. ;
Boudreau, Andrew ;
Hardenbol, Paul ;
Leal, Suzanne M. ;
Pasternak, Shiran ;
Wheeler, David A. ;
Willis, Thomas D. ;
Yu, Fuli ;
Yang, Huanming ;
Zeng, Changqing ;
Gao, Yang ;
Hu, Haoran ;
Hu, Weitao ;
Li, Chaohua ;
Lin, Wei ;
Liu, Siqi ;
Pan, Hao ;
Tang, Xiaoli ;
Wang, Jian ;
Wang, Wei ;
Yu, Jun ;
Zhang, Bo ;
Zhang, Qingrun ;
Zhao, Hongbin ;
Zhao, Hui ;
Zhou, Jun ;
Gabriel, Stacey B. ;
Barry, Rachel ;
Blumenstiel, Brendan ;
Camargo, Amy ;
Defelice, Matthew ;
Faggart, Maura ;
Goyette, Mary ;
Gupta, Supriya ;
Moore, Jamie ;
Nguyen, Huy ;
Onofrio, Robert C. ;
Parkin, Melissa ;
Roy, Jessica ;
Stahl, Erich ;
Winchester, Ellen ;
Ziaugra, Liuda ;
Altshuler, David ;
Shen, Yan .
NATURE, 2007, 449 (7164) :851-U3
[9]   Model-based inference of haplotype block variation [J].
Greenspan, G ;
Geiger, D .
JOURNAL OF COMPUTATIONAL BIOLOGY, 2004, 11 (2-3) :495-506
[10]   Practical Issues in Imputation-Based Association Mapping [J].
Guan, Yongtao ;
Stephens, Matthew .
PLOS GENETICS, 2008, 4 (12)