Growth and inactivation models to be used in quantitative risk assessments

被引:97
作者
van Gerwen, SJC [1 ]
Zwietering, MH [1 ]
机构
[1] Wageningen Univ Agr, Dept Food Technol & Nutr Sci, NL-6700 EV Wageningen, Netherlands
关键词
D O I
10.4315/0362-028X-61.11.1541
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
In past years many models describing growth and inactivation of microorganisms have been developed. This study is a discussion of the growth and inactivation models that can be used in a stepwise procedure for quantitative risk assessment. First, rough risk assessments are performed in which orders of magnitude for microbial processes are estimated by the use of simple models. This method provides an efficient way to find the main determinants of risk. Second, the main determinants of risk are studied more accurately and quantitatively. It is best to compare several models at this level, as no model is expected to be able accurately to predict microbial responses under all circumstances. By comparing various models the main determinants of risk are studied from several points of view, and risks can be assessed on a broad basis. If, however, process variations have a more profound effect on risk than the differences between models, it is most efficient to use the simplest model available. If relevant, the process variations can be stochastically described in the third level of detail. Stochastic description of the process parameters will however not change the conclusion on the usefulness of simple models in quantitative risk assessments. The proposed stepwise procedure that starts simply before going into detail provides a structured method of risk assessment and prevents the researcher from getting caught in too much complexity. This simplicity is necessary because of the complex nature of food safety. The principal aspects are highlighted during the procedure and many factors can be omitted since their quantitative effect is negligible.
引用
收藏
页码:1541 / 1549
页数:9
相关论文
共 48 条
[1]  
ADAIR C, 1989, Food Microbiology (London), V6, P7, DOI 10.1016/S0740-0020(89)80033-4
[2]   PREDICTING THE SAFE STORAGE OF FRESH FISH UNDER MODIFIED ATMOSPHERES WITH RESPECT TO CLOSTRIDIUM-BOTULINUM TOXIGENICITY BY MODELING LENGTH OF THE LAG PHASE OF GROWTH [J].
BAKER, DA ;
GENIGEORGIS, C .
JOURNAL OF FOOD PROTECTION, 1990, 53 (02) :131-+
[3]  
BALL CO, 1957, STERILIZATION FOOD C
[4]   A DYNAMIC APPROACH TO PREDICTING BACTERIAL-GROWTH IN FOOD [J].
BARANYI, J ;
ROBERTS, TA .
INTERNATIONAL JOURNAL OF FOOD MICROBIOLOGY, 1994, 23 (3-4) :277-294
[5]   RESPONSE-SURFACE MODEL FOR PREDICTING THE EFFECTS OF TEMPERATURE PH, SODIUM-CHLORIDE CONTENT, SODIUM-NITRITE CONCENTRATION AND ATMOSPHERE ON THE GROWTH OF LISTERIA-MONOCYTOGENES [J].
BUCHANAN, RL ;
PHILLIPS, JG .
JOURNAL OF FOOD PROTECTION, 1990, 53 (05) :370-&
[6]   PREDICTIVE FOOD MICROBIOLOGY [J].
BUCHANAN, RL .
TRENDS IN FOOD SCIENCE & TECHNOLOGY, 1993, 4 (01) :6-11
[7]   RESPONSE-SURFACE MODELS FOR THE GROWTH-KINETICS OF ESCHERICHIA-COLI O157H7 [J].
BUCHANAN, RL ;
BAGI, LK ;
GOINS, RV ;
PHILLIPS, JG .
FOOD MICROBIOLOGY, 1993, 10 (04) :303-315
[8]  
CASOLARI A, 1994, FOOD MICROBIOL, V11, P75, DOI 10.1006/fmic.1994.1010
[9]   TAILING OF SURVIVAL CURVES OF BACTERIAL-SPORES [J].
CERF, O .
JOURNAL OF APPLIED BACTERIOLOGY, 1977, 42 (01) :1-19
[10]   A VITALISTIC MODEL TO DESCRIBE THE THERMAL INACTIVATION OF LISTERIA-MONOCYTOGENES [J].
COLE, MB ;
DAVIES, KW ;
MUNRO, G ;
HOLYOAK, CD ;
KILSBY, DC .
JOURNAL OF INDUSTRIAL MICROBIOLOGY, 1993, 12 (3-5) :232-239