Memory effects and scaling laws in slowly driven systems

被引:32
作者
Berglund, N [1 ]
Kunz, H [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Inst Phys Theor, PHB Ecublens, CH-1015 Lausanne, Switzerland
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1999年 / 32卷 / 01期
关键词
D O I
10.1088/0305-4470/32/1/005
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper deals with dynamical systems depending on a slowly varying parameter. We present several physical examples illustrating memory effects, such as metastability and hysteresis, which frequently occur in these systems. The examples include the delayed appearance of convection rolls in Rayleigh-Benard convection with slowly varying temperature gradient, scaling of hysteresis area for ferromagnets in a low-frequency magnetic field. and a pendulum on a rotating table displaying chaotic hysteresis. A mathematical theory is outlined, which allows us to prove the existence of hysteresis cycles, and determine related scaling laws.
引用
收藏
页码:15 / 39
页数:25
相关论文
共 22 条
[1]  
[Anonymous], 1988, DIFFER EQU
[2]  
BENOIT E, 1991, LECT NOTES MATH, V1493
[3]   Chaotic hysteresis in an adiabatically oscillating double well [J].
Berglund, N ;
Kunz, H .
PHYSICAL REVIEW LETTERS, 1997, 78 (09) :1691-1694
[4]  
BERGLUND N, 1998, P INT WORKSH CEL MEC
[5]  
Berglund Nils, 1998, THESIS EPFL
[6]  
DEMELO W, 1993, ONE DIMENSIONAL DYNA
[8]  
Goldsztein GH, 1997, SIAM J APPL MATH, V57, P1163
[9]  
Hale J, 1991, DYNAMICS BIFURCATION
[10]   SCALING LAWS FOR DYNAMICAL HYSTERESIS IN A MULTIDIMENSIONAL LASER SYSTEM [J].
HOHL, A ;
VANDERLINDEN, HJC ;
ROY, R ;
GOLDSZTEIN, G ;
BRONER, F ;
STROGATZ, SH .
PHYSICAL REVIEW LETTERS, 1995, 74 (12) :2220-2223