Construction of bivariate compactly supported biorthogonal box spline wavelets with arbitrarily high regularities

被引:39
作者
He, WJ [1 ]
Lai, MJ [1 ]
机构
[1] Univ Georgia, Dept Math, Athens, GA 30602 USA
关键词
D O I
10.1006/acha.1998.0245
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give a simple formula for the duals of the filters associated with bivariate box spline functions. We show how to construct bivariate non-separable compactly supported biorthogonal wavelets associated with box spline functions which have arbitrarily high regularities. (C) 1999 Academic Press.
引用
收藏
页码:53 / 74
页数:22
相关论文
共 23 条
[1]  
Adams WW, 1994, Graduate Studies in Mathematics, V3, pxiv+289
[2]  
[Anonymous], 1993, Ten Lectures of Wavelets
[3]  
Chui C., 1992, APPROX THEORY APPL, V8, P77
[4]  
Chui C. K., 1991, Computer-Aided Geometric Design, V8, P479, DOI 10.1016/0167-8396(91)90032-7
[5]  
Chui C. K., 1994, Applied and Computational Harmonic Analysis, V1, P368, DOI 10.1006/acha.1994.1023
[6]  
Chui Charles K., 1988, Multivariate Splines
[7]   COMPACTLY SUPPORTED BIDIMENSIONAL WAVELET BASES WITH HEXAGONAL SYMMETRY [J].
COHEN, A ;
SCHLENKER, JM .
CONSTRUCTIVE APPROXIMATION, 1993, 9 (2-3) :209-236
[8]   BIORTHOGONAL BASES OF COMPACTLY SUPPORTED WAVELETS [J].
COHEN, A ;
DAUBECHIES, I ;
FEAUVEAU, JC .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1992, 45 (05) :485-560
[9]   ORTHONORMAL BASES OF COMPACTLY SUPPORTED WAVELETS [J].
DAUBECHIES, I .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1988, 41 (07) :909-996
[10]  
de Boor C., 1993, BOX SPLINES