Sums of products of Bernoulli numbers

被引:118
作者
Dilcher, K [1 ]
机构
[1] DALHOUSIE UNIV, DEPT MATH STAT & COMP SCI, HALIFAX, NS B3H 3J5, CANADA
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1006/jnth.1996.0110
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Closed expressions are obtained for sums of products of Bernoulli numbers of the form Sigma((2n)(2j1, ..., 2jN)) B-2j1 ... B-2jN, where the summation is extended over all nonnegative integers j(1), ..., j(N) with j(1) + j(2) + ... + j(N) = n. Corresponding results are derived for Bernoulli polynomials, and for Euler numbers and polynomials. As easy corollaries we obtain formulas for sums of products of the Riemann zeta function at even integers and of other related infinite series. (C) 1996 Academic Press, Inc.
引用
收藏
页码:23 / 41
页数:19
相关论文
共 17 条
[1]  
Abramowitz M., 1964, HDB MATH FUNCTIONS
[2]  
[Anonymous], 1924, DIFFERENZENRECHNUNG
[3]  
[Anonymous], 1975, TABLE SERIES PRODUCT
[4]  
[Anonymous], ADV COMBINATORICS
[5]   ON VALUES OF THE RIEMANN ZETA FUNCTION AT INTEGRAL ARGUMENTS [J].
EWELL, JA .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1991, 34 (01) :60-66
[6]  
GROSSWALD E, 1970, NACHR AKAD WISS G MP, V2, P9
[7]  
Grosswald Emil., 1972, J. Number Theory, V4, P225
[8]  
HAUKKANEN P, 1994, FIBONACCI QUART, V32, P369
[9]   MULTIPLE HARMONIC SERIES [J].
HOFFMAN, ME .
PACIFIC JOURNAL OF MATHEMATICS, 1992, 152 (02) :275-290
[10]  
Norlund N.E., 1922, Acta Math., V43, P121, DOI DOI 10.1007/BF02401755