YjdE (AdiC) is the Arginine:Agmatine antiporter essential for arginine-dependent acid resistance in Escherichia coli

被引:100
作者
Gong, S [1 ]
Richard, H [1 ]
Foster, JW [1 ]
机构
[1] Univ S Alabama, Coll Med, Dept Microbiol & Immunol, Mobile, AL 36688 USA
关键词
D O I
10.1128/JB.185.15.4402-4409.2003
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
To survive in extremely acidic conditions, Escherichia coli has evolved three adaptive acid resistance strategies thought to maintain internal pH. While the mechanism behind acid resistance system 1 remains enigmatic, systems 2 and 3 are known to require external glutamate (system 2) and arginine (system 3) to function. These latter systems employ specific amino acid decarboxylases and putative antiporters that exchange the extracellular amino acid substrate for the intracellular by-product of decarboxylation. Although GadC is the predicted antiporter for system 2, the antiporter specific for arginine/agmatine exchange has not been identified. A computer-based homology search revealed that the yjdE (now called adiC) gene product shared an overall amino acid identity of 22% with GadC. A series of adiC mutants isolated by random mutagenesis and by targeted deletion were shown to be defective in arginine-dependent acid resistance. This defect was restored upon introduction of an adiC(+)-containing plasmid. An adiC mutant proved incapable of exchanging extracellular arginine for intracellular agmatine but maintained wild-type levels of arginine decarboxylase protein and activity. Western blot analysis indicated AdiC is an integral membrane protein. These data indicate that the arginine-to-agmatine conversion defect of adiC mutants was at the level of transport. The adi gene region was shown to be organized into two transcriptional units, adiAY and adiC, which are coordinately regulated but independently transcribed. The data also illustrate that the AdiA decarboxylase: AdiC antiporter system is designed to function only at acid levels sufficient to harm the cell.
引用
收藏
页码:4402 / 4409
页数:8
相关论文
共 20 条
[1]   CONSTRUCTION OF LAC FUSIONS TO THE INDUCIBLE ARGININE AND LYSINE DECARBOXYLASE GENES OF ESCHERICHIA-COLI-K12 [J].
AUGER, EA ;
REDDING, KE ;
PLUMB, T ;
CHILDS, LC ;
MENG, SY ;
BENNETT, GN .
MOLECULAR MICROBIOLOGY, 1989, 3 (05) :609-620
[2]  
BOCKER EA, 1972, ENZYMES, V6, P217
[3]   Control of acid resistance in Escherichia coli [J].
Castanie-Cornet, MP ;
Penfound, TA ;
Smith, D ;
Elliott, JF ;
Foster, JW .
JOURNAL OF BACTERIOLOGY, 1999, 181 (11) :3525-3535
[4]   Escherichia coli acid resistance:: cAMP receptor protein and a 20 bp cis-acting sequence control pH and stationary phase expression of the gadA and gadBC glutamate decarboxylase genes [J].
Castanie-Cornet, MP ;
Foster, JW .
MICROBIOLOGY-UK, 2001, 147 :709-715
[5]   One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products [J].
Datsenko, KA ;
Wanner, BL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (12) :6640-6645
[6]   TIGHT REGULATION, MODULATION, AND HIGH-LEVEL EXPRESSION BY VECTORS CONTAINING THE ARABINOSE P-BAD PROMOTER [J].
GUZMAN, LM ;
BELIN, D ;
CARSON, MJ ;
BECKWITH, J .
JOURNAL OF BACTERIOLOGY, 1995, 177 (14) :4121-4130
[7]   STUDIES ON TRANSFORMATION OF ESCHERICHIA-COLI WITH PLASMIDS [J].
HANAHAN, D .
JOURNAL OF MOLECULAR BIOLOGY, 1983, 166 (04) :557-580
[8]  
Kumar S, 2000, BIOTECHNOL BIOENG, V67, P575, DOI 10.1002/(SICI)1097-0290(20000305)67:5<575::AID-BIT8>3.0.CO
[9]  
2-L
[10]   CLEAVAGE OF STRUCTURAL PROTEINS DURING ASSEMBLY OF HEAD OF BACTERIOPHAGE-T4 [J].
LAEMMLI, UK .
NATURE, 1970, 227 (5259) :680-+