Genome-wide analysis of the UDP-glucose dehydrogenase gene family in Arabidopsis, a key enzyme for matrix polysaccharides in cell walls

被引:106
作者
Klinghammer, Michaela
Tenhaken, Raimund [1 ]
机构
[1] Goethe Univ Frankfurt, Bio Ctr, D-60439 Frankfurt, Germany
[2] Salzburg Univ, A-5020 Salzburg, Austria
关键词
cell wall precursor; gene expression; hemicellulose; nucleotide-sugar; UDP-glucose dehydrogenase;
D O I
10.1093/jxb/erm209
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Arabidopsis cell walls contain large amounts of pectins and hemicelluloses, which are predominantly synthesized via the common precursor UDP-glucuronic acid. The major enzyme for the formation of this nucleotide-sugar is UDP-glucose dehydrogenase, catalysing the irreversible oxidation of UDP-glucose into UDP-glucuronic acid. Four functional gene family members and one pseudogene are present in the Arabidopsis genome, and they show distinct tissue-specific expression patterns during plant development. The analyses of reporter gene lines indicate gene expression of UDP-glucose dehydrogenases in growing tissues. The biochemical characterization of the different isoforms shows equal affinities for the cofactor NAD(+) (similar to 40 mu M) but variable affinities for the substrate UDP-glucose (120-335 mu M) and different catalytic constants, suggesting a regulatory role for the different isoforms in carbon partitioning between cell wall formation and sucrose synthesis as the second major UDP-glucose-consuming pathway. UDP-glucose dehydrogenase is feedback inhibited by UDP-xylose. The relatively (compared with a soybean UDP-glucose dehydrogenase) low affinity of the enzymes for the substrate UDP-glucose is paralleled by the weak inhibition of the enzymes by UDP-xylose. The four Arabidopsis UDP-glucose dehydrogenase isoforms oxidize only UDP-glucose as a substrate. Nucleotide-sugars, which are converted by similar enzymes in bacteria, are not accepted as substrates for the Arabidopsis enzymes.
引用
收藏
页码:3609 / 3621
页数:13
相关论文
共 42 条
[1]   PURIFICATION AND CHARACTERIZATION OF RECOMBINANT HUMAN P50(CSK) PROTEIN-TYROSINE KINASE FROM AN ESCHERICHIA-COLI EXPRESSION SYSTEM OVERPRODUCING THE BACTERIAL CHAPERONES GROES AND GROEL [J].
AMREIN, KE ;
TAKACS, B ;
STIEGER, M ;
MOLNOS, J ;
FLINT, NA ;
BURN, P .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (04) :1048-1052
[2]  
[Anonymous], ENCY PLANT PHYSL
[3]   Analysis of the sucrose synthase gene family in Arabidopsis [J].
Bieniawska, Zuzanna ;
Barratt, D. H. Paul ;
Garlick, Andrew P. ;
Thole, Vera ;
Kruger, Nicholas J. ;
Martin, Cathie ;
Zrenner, Rita ;
Smith, Alison M. .
PLANT JOURNAL, 2007, 49 (05) :810-828
[4]   The mechanism of synthesis of a mixed-linkage (1→3),(1→4)β-D-glucan in maize.: Evidence for multiple sites of glucosyl transfer in the synthase complex [J].
Buckeridge, MS ;
Vergara, CE ;
Carpita, NC .
PLANT PHYSIOLOGY, 1999, 120 (04) :1105-1116
[5]   The biosynthesis of L-arabinose in plants:: Molecular cloning and characterization of a Golgi-localized UDP-D-xylose 4-epimerase encoded by the MUR4 gene of Arabidopsis [J].
Burget, EG ;
Verma, R ;
Molhoj, M ;
Reiter, WD .
PLANT CELL, 2003, 15 (02) :523-531
[6]   The first structure of UDP-glucose dehydrogenase reveals the catalytic residues necessary for the two-fold oxidation [J].
Campbell, RE ;
Mosimann, SC ;
van de Rijn, I ;
Tanner, ME ;
Strynadka, NCJ .
BIOCHEMISTRY, 2000, 39 (23) :7012-7023
[7]  
CHOMCZYNSKI P, 1987, ANAL BIOCHEM, V162, P156, DOI 10.1016/0003-2697(87)90021-2
[8]   Floral dip:: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana [J].
Clough, SJ ;
Bent, AF .
PLANT JOURNAL, 1998, 16 (06) :735-743
[9]   SUBCELLULAR COMPARTMENTATION OF URIDINE NUCLEOTIDES AND NUCLEOSIDE-5'-DIPHOSPHATE KINASE IN LEAVES [J].
DANCER, J ;
NEUHAUS, HE ;
STITT, M .
PLANT PHYSIOLOGY, 1990, 92 (03) :637-641
[10]  
Farré EM, 2001, PLANT PHYSIOL, V127, P685, DOI 10.1104/pp.127.2.685