Liquid crystal based continuous phase retarder: from optically neutral to a quarter waveplate in 200 microseconds.

被引:6
作者
Broughton, BJ [1 ]
Clarke, MJ [1 ]
Betts, RA [1 ]
Bricheno, T [1 ]
Coles, HJ [1 ]
机构
[1] Univ Cambridge, Dept Engn, CMMPE, Cambridge CB4 0FP, England
来源
Emerging Liquid Crystal Technologies | 2005年 / 5741卷
关键词
flexoelectro-optic; polarization control; chiral nematic; endless; phase retarder; grandjean; polymer stabilizationn;
D O I
10.1117/12.593301
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
Liquid crystal variable phase retarders have been incorporated into prototype devices for optical communications system applications, both as endless polarization controllers' 23, and as holographic beam steerers(4). Nematic liquid crystals allow continuous control of the degree of retardation induced at relatively slow switching speeds, while ferroelectric liquid crystal based devices allow fast (sub millisecond) switching, but only between two bistable states. The flexoelectro-optic effect(5,6) in short-pitch chiral nematic liquid crystals allows both fast switching of the optic axis and continuous, electric field dependent control of the degree of rotation of the optic axis. A novel geometry for the flexoelectro-optic effect is presented here, in which the helical axis of the chiral nematic is perpendicular to the cell walls (grandjean texture) and the electric field is applied in the plane of the cell. This facilitates deflection of the optic axis of the uniaxial negatively birefringent material from lying along the direction of propagation to having some component in the polarization plane of the light. The device is therefore optically neutral at zero field for telecommunications wavelengths (1550nm), and allows a continuously variable degree of phase excursion to be induced, up to 2 pi/3 radians achieved so far in a 40 mu m thick cell. The retardation has been shown both to appear, on application of the field, and disappear on removal, at speeds of 100-500 mu s. The direction of deflection of the optic axis is also dependent on the direction of the field, allowing the possibility, in a converging electrode "cartwheel cell", of endless rotation of the liquid crystal waveplate at a higher rate than achievable through dielectric coupling to plain nematic materials.
引用
收藏
页码:190 / 196
页数:7
相关论文
共 11 条
[1]   In-fiber nematic liquid crystal optical modulator based on in-plane switching with microsecond response time [J].
Acharya, BR ;
Baldwin, KW ;
MacHarrie, RA ;
Rogers, JA ;
Huang, CC ;
Pindak, R .
APPLIED PHYSICS LETTERS, 2002, 81 (27) :5243-5245
[2]  
BETTS RA, Patent No. 2004021073
[3]   The effect of the molecular structure on flexoelectric coupling in the chiral nematic phase [J].
Coles, HJ ;
Musgrave, B ;
Coles, MJ ;
Willmott, J .
JOURNAL OF MATERIALS CHEMISTRY, 2001, 11 (11) :2709-2716
[4]   Holographic optical switching: The "ROSES" demonstrator [J].
Crossland, WA ;
Manolis, IG ;
Redmond, MM ;
Tan, KL ;
Wilkinson, TD ;
Holmes, MJ ;
Parker, TR ;
Chu, HH ;
Croucher, J ;
Handerek, VA ;
Warr, ST ;
Robertson, B ;
Bonas, IG ;
Franklin, R ;
Stace, C ;
White, HJ ;
Woolley, RA ;
Henshall, G .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2000, 18 (12) :1845-1854
[5]   Endless smectic A* liquid crystal polarization controller [J].
Dupont, L ;
Sansoni, T ;
de la Tocnaye, JLD .
OPTICS COMMUNICATIONS, 2002, 209 (1-3) :101-106
[6]   PIEZOELECTRIC EFFECTS IN LIQUID CRYSTALS [J].
MEYER, RB .
PHYSICAL REVIEW LETTERS, 1969, 22 (18) :918-&
[7]   Liquid crystal rotatable waveplates [J].
Ohtera, Y ;
Chiba, T ;
Kawakami, S .
IEEE PHOTONICS TECHNOLOGY LETTERS, 1996, 8 (03) :390-392
[8]   Dynamic digital holographic wavelength filtering [J].
Parker, MC ;
Cohen, AD ;
Mears, RJ .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 1998, 16 (07) :1259-1270
[9]   FAST LINEAR ELECTRO-OPTIC EFFECT BASED ON CHOLESTERIC LIQUID-CRYSTALS [J].
PATEL, JS ;
LEE, SD .
JOURNAL OF APPLIED PHYSICS, 1989, 66 (04) :1879-1881
[10]   FLEXOELECTRIC ELECTROOPTICS OF A CHOLESTERIC LIQUID-CRYSTAL [J].
PATEL, JS ;
MEYER, RB .
PHYSICAL REVIEW LETTERS, 1987, 58 (15) :1538-1540