Stabilizing controller design for linear parameter-varying systems using parameter feedback

被引:4
作者
Malloy, D [1 ]
Chang, BC
机构
[1] Boeing Co, Flight Control Syst, Philadelphia, PA 19142 USA
[2] Drexel Univ, Dept Mech Engn, Philadelphia, PA 19104 USA
关键词
D O I
10.2514/2.4322
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
A new design approach is presented for linear parameter-varying systems that utilizes real-time knowledge of the parameters to exponentially stabilize the closed-loop system for all parameter variations. By changing the system's coordinates to phase-variable canonical form, a parameter-dependent feedback controller can be constructed that renders the system dynamics to be time invariant and exponentially stable for all coordinates. If the original plant is uniformly controllable and/or observable and its parameters satisfy a certain smoothness and boundedness condition, then the closed-loop system is guaranteed stable for all allowable parameter values and rates of change. We discuss procedures for the design of stabilizing state feedback controllers, observers with stable error dynamics, and output feedback regulators. Examples based on a missile flight control problem illustrate the methods.
引用
收藏
页码:891 / 898
页数:8
相关论文
共 20 条
[1]   SELF-SCHEDULED H-INFINITY CONTROL OF MISSILE VIA LINEAR MATRIX INEQUALITIES [J].
APKARIAN, P ;
BIANNIC, JM ;
GAHINET, P .
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 1995, 18 (03) :532-538
[2]   A CONVEX CHARACTERIZATION OF GAIN-SCHEDULED H-INFINITY CONTROLLERS [J].
APKARIAN, P ;
GAHINET, P .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1995, 40 (05) :853-864
[3]  
BALAS G, 1993, MU AN SYNTH TOOLB
[4]   ROBUST PERFORMANCE OF LINEAR PARAMETRICALLY VARYING SYSTEMS USING PARAMETRICALLY-DEPENDENT LINEAR FEEDBACK [J].
BECKER, G ;
PACKARD, A .
SYSTEMS & CONTROL LETTERS, 1994, 23 (03) :205-215
[5]  
Boyd S, 1994, Linear Matrix Inequalities in System and Control Theory, V42, P434
[6]  
ELLIS W, 1992, MAPLE 5 FLIGHT MANUA
[7]   ON THE ADIABATIC APPROXIMATION FOR DESIGN OF CONTROL LAWS FOR LINEAR, TIME-VARYING SYSTEMS [J].
FRIEDLAND, B ;
RICHMAN, J ;
WILLIAMS, DE .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1987, 32 (01) :62-63
[8]  
GAHINET P, 1994, IEEE DECIS CONTR P, P2026, DOI 10.1109/CDC.1994.411442
[9]  
Gahinet P., 1995, LMI Control Toolbox
[10]  
MALLOY D, 1995, P 33 ALL C COMM CONT