Quantum error correction via codes over GF (4)

被引:1214
作者
Calderbank, AR [1 ]
Rains, EM [1 ]
Shor, PW [1 ]
Sloane, NJA [1 ]
机构
[1] AT&T Bell Labs, Res, Florham Pk, NJ 07932 USA
关键词
codes; additive; quantum; quaternary; self-orthogonal; geometry; orthogonal; symplectic; group; Clifford;
D O I
10.1109/18.681315
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The problem of finding quantum-error-correcting codes is transformed into the problem of finding additive codes over the field GF(4) which are self-orthogonal with respect to a certain trace inner product. Many new codes and new bounds are presented, as well as a table of upper and lower bounds on such codes of length up to 30 qubits.
引用
收藏
页码:1369 / 1387
页数:19
相关论文
共 94 条
[1]  
Aharonov D., 1997, P 29 ANN ACM S THEOR, P176, DOI DOI 10.1145/258533.258579
[2]  
[Anonymous], P S PURE MATH
[3]  
[Anonymous], AMPL MODELLING LANGU
[4]  
Aschbacher M., 2000, FINITE GROUP THEORY
[5]   TELEPORTING AN UNKNOWN QUANTUM STATE VIA DUAL CLASSICAL AND EINSTEIN-PODOLSKY-ROSEN CHANNELS [J].
BENNETT, CH ;
BRASSARD, G ;
CREPEAU, C ;
JOZSA, R ;
PERES, A ;
WOOTTERS, WK .
PHYSICAL REVIEW LETTERS, 1993, 70 (13) :1895-1899
[6]  
Bennett CH, 1996, PHYS REV A, V54, P3824, DOI 10.1103/PhysRevA.54.3824
[7]   Purification of noisy entanglement and faithful teleportation via noisy channels [J].
Bennett, CH ;
Brassard, G ;
Popescu, S ;
Schumacher, B ;
Smolin, JA ;
Wootters, WK .
PHYSICAL REVIEW LETTERS, 1996, 76 (05) :722-725
[8]  
BENNETT CH, QUANTPH9604024 LANL
[9]  
BENNETT CH, QUANTPH9511027 LANL
[10]  
Bolt B., 1961, J AUSTR MATH SOC, V2, P80