Novel donor splice site mutation in the KVLQT1 gene is associated with long QT syndrome

被引:23
作者
Kanters, JK [1 ]
Larsen, LA
Orholm, M
Agner, E
Andersen, PS
Vuust, J
Christiansen, M
机构
[1] Elsinore Hosp, Coronary Care Unit, Dept Med, Dept Internal Med, DK-3000 Helsingor, Denmark
[2] State Serum Inst, Dept Clin Biochem, Copenhagen S, Denmark
[3] Univ Copenhagen, Dept Med Physiol, Copenhagen N, Denmark
关键词
long QT syndrome; KVLQT1; -1 donor splice site mutation; KCNA9;
D O I
10.1111/j.1540-8167.1998.tb00944.x
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
KVLQT1 Gene Mutation and LQTS, Introduction: Inherited long QT syndrome (LQTS) recently has been associated with mutations in genes coding for potassium (KVLQTI, KCNE1, and HERG) or sodium (SCN5A) ion channels involved in regulating either sodium inward or potassium outward currents of heart cells, resulting in prolongation of the repolarization period. We describe a new mutation, a -1 donor splice site mutation in a kindred with two affected members (QTc = 0.61 and 0.54 sec). Methods and Results: Single stranded conformation polymorphism (SSCP) analyses were performed on DNA fragments amplified by polymerase chain reaction from DNA extracted from whole blood. Aberrant conformers were analyzed by DNA sequencing. SSCP analysis of the KVLQT1 gene revealed an aberrant conformer in the affected family members. DNA sequencing confirmed the presence of a G-->A change in the last nucleotide of codon 344. This mutation does not cause an amino acid change, but a change of the splice site characteristics at the 3' end of exon 6. The mutation may affect, through deficient splicing, the putative sixth transmembrane segment of the K+ channel, and this type of mutation has not previously been described in KVLQT1. Conclusion: The clinical course of LQTS in the affected family members, in whom no deaths occurred despite 20 to 30 syncopes, can be explained by the ability of the cellular machinery to perform partial correct splicing in the mutant allele. This type of mutation may be misinterpreted as a normal variant, since it is a point mutation causing neither an amino acid change nor the introduction of a stop codon.
引用
收藏
页码:620 / 624
页数:5
相关论文
共 24 条
[1]  
AKLI S, 1990, J BIOL CHEM, V265, P7324
[2]   PREDICTION OF HUMAN MESSENGER-RNA DONOR AND ACCEPTOR SITES FROM THE DNA-SEQUENCE [J].
BRUNAK, S ;
ENGELBRECHT, J ;
KNUDSEN, S .
JOURNAL OF MOLECULAR BIOLOGY, 1991, 220 (01) :49-65
[3]   Properties of KvLQT1 K+ channel mutations in Romano-Ward and Jervell and Lange-Nielsen inherited cardiac arrhythmias [J].
Chouabe, C ;
Neyroud, N ;
Guicheney, P ;
Lazdunski, M ;
Romey, G ;
Barhanin, J .
EMBO JOURNAL, 1997, 16 (17) :5472-5479
[4]   A MOLECULAR-BASIS FOR CARDIAC-ARRHYTHMIA - HERG MUTATIONS CAUSE LONG QT SYNDROME [J].
CURRAN, ME ;
SPLAWSKI, I ;
TIMOTHY, KW ;
VINCENT, GM ;
GREEN, ED ;
KEATING, MT .
CELL, 1995, 80 (05) :795-803
[5]   A POINT MUTATION G-]A IN EXON-12 OF THE PORPHOBILINOGEN DEAMINASE GENE RESULTS IN EXON SKIPPING AND IS RESPONSIBLE FOR ACUTE INTERMITTENT PORPHYRIA [J].
GRANDCHAMP, B ;
PICAT, C ;
DEROOIJ, F ;
BEAUMONT, C ;
WILSON, P ;
DEYBACH, JC ;
NORDMANN, Y .
NUCLEIC ACIDS RESEARCH, 1989, 17 (16) :6637-6649
[6]  
KRAWCZAK M, 1992, HUM GENET, V90, P41
[7]   A novel mutation in the potassium channel gene KVLQT1 causes the Jervell and Lange-Nielsen cardioauditory syndrome [J].
Neyroud, N ;
Tesson, F ;
Denjoy, I ;
Leibovici, M ;
Donger, C ;
Barhanin, J ;
Faure, S ;
Gary, F ;
Coumel, P ;
Petit, C ;
Schwartz, K ;
Guicheney, P .
NATURE GENETICS, 1997, 15 (02) :186-189
[8]   DETECTION OF POLYMORPHISMS OF HUMAN DNA BY GEL-ELECTROPHORESIS AS SINGLE-STRAND CONFORMATION POLYMORPHISMS [J].
ORITA, M ;
IWAHANA, H ;
KANAZAWA, H ;
HAYASHI, K ;
SEKIYA, T .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1989, 86 (08) :2766-2770
[9]  
PADGETT RA, 1986, ANNU REV BIOCHEM, V55, P1119, DOI 10.1146/annurev.bi.55.070186.005351
[10]  
Reese M. G., SPLICE SITE PREDICTI