Structure-based, targeted deglycosylation of HIV-1 gp120 and effects on neutralization sensitivity and antibody recognition

被引:153
作者
Koch, M
Pancera, M
Kwong, PD
Kolchinsky, P
Grundner, C
Wang, LP
Hendrickson, WA
Sodroski, J
Wyatt, R
机构
[1] NIH, Vaccine Res Ctr, Virol Lab, Bethesda, MD 20892 USA
[2] Dana Farber Canc Inst, Dept Canc Immunol & AIDS, Boston, MA 02115 USA
[3] Columbia Univ, Dept Biochem & Mol Biophys, New York, NY 10032 USA
[4] Columbia Univ, Howard Hughes Med Inst, New York, NY 10032 USA
[5] Harvard Univ, Sch Med, Dept Pathol, Boston, MA 02115 USA
[6] Harvard Univ, Sch Publ Hlth, Dept Immunol & Infect Dis, Boston, MA 02115 USA
[7] Harvard Univ, Sch Med, Dept Med, Boston, MA 02115 USA
关键词
HIV-1; exterior envelope glycoprotein; structure; deglycosylation; neutralization; antibody binding; correlation;
D O I
10.1016/S0042-6822(03)00294-0
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
The human immunodeficiency virus (HIV-1) exterior envelope glycoprotein, gpl20, mediates receptor binding and is the major target for neutralizing antibodies. Primary HIV-1 isolates are characteristically more resistant to broadly neutralizing antibodies, although the structural basis for this resistance remains obscure. Most broadly neutralizing antibodies are directed against functionally conserved gp120 regions involved in binding to either the primary virus receptor, CD4, or the viral coreceptor molecules that normally function as chemokine receptors. These antibodies are known as CD4 binding site (CD4BS) and CD4-induced (CD4i) antibodies, respectively. Inspection of the gp120 crystal structure reveals that although the receptor-binding regions lack glycosylation, sugar moieties lie proximal to both receptor-binding sites on gp120 and thus in proximity to both the CD4BS and the CD4i epitopes. In this study, guided by the X-ray crystal structure of gp 120, we deleted four N-linked glycosylation sites that flank the receptor-binding regions. We examined the effects of selected changes on the sensitivity of two prototypic HIV-1 primary isolates to neutralization by antibodies. Surprisingly, removal of a single N-linked glycosylation site at the base of the gp120 third variable region (V3 loop) increased the sensitivity of the primary viruses to neutralization by CD4BS antibodies. Envelope glycoprotein oligomers on the cell surface derived from the V3 glycan-deficient virus were better recognized by a CD4BS antibody and a V3 loop antibody than were the wild-type glycoproteins. Absence of all four glycosylation sites rendered a primary isolate sensitive to CD4i antibody-mediated neutralization. Thus, carbohydrates that flank receptor-binding regions on gp120 protect primary HIV-1 isolates from antibody-mediated neutralization. (C) 2003 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:387 / 400
页数:14
相关论文
共 63 条
[1]   CC CKRS: A RANTES, MIP-1 alpha, MIP-1 beta receptor as a fusion cofactor for macrophage-tropic HIV-1 [J].
Alkhatib, G ;
Combadiere, C ;
Broder, CC ;
Feng, Y ;
Kennedy, PE ;
Murphy, PM ;
Berger, EA .
SCIENCE, 1996, 272 (5270) :1955-1958
[2]   AN N-GLYCAN WITHIN THE HUMAN-IMMUNODEFICIENCY-VIRUS TYPE-1 GP120 V3 LOOP AFFECTS VIRUS NEUTRALIZATION [J].
BACK, NKT ;
SMIT, L ;
DEJONG, JJ ;
KEULEN, W ;
SCHUTTEN, M ;
GOUDSMIT, J ;
TERSMETTE, M .
VIROLOGY, 1994, 199 (02) :431-438
[3]   Human immunodeficiency virus (HIV) envelope binds to CXCR4 independently of CD4, and binding can be enhanced by interaction with soluble CD4 or by HIV envelope deglycosylation [J].
Bandres, JC ;
Wang, QF ;
O'Leary, J ;
Baleaux, F ;
Amara, A ;
Hoxie, JA ;
Zolla-Pazner, S ;
Gorny, MK .
JOURNAL OF VIROLOGY, 1998, 72 (03) :2500-2504
[4]   ISOLATION OF A T-LYMPHOTROPIC RETROVIRUS FROM A PATIENT AT RISK FOR ACQUIRED IMMUNE-DEFICIENCY SYNDROME (AIDS) [J].
BARRESINOUSSI, F ;
CHERMANN, JC ;
REY, F ;
NUGEYRE, MT ;
CHAMARET, S ;
GRUEST, J ;
DAUGUET, C ;
AXLERBLIN, C ;
VEZINETBRUN, F ;
ROUZIOUX, C ;
ROZENBAUM, W ;
MONTAGNIER, L .
SCIENCE, 1983, 220 (4599) :868-871
[5]   TARGET CELL-SPECIFIC DETERMINANTS OF MEMBRANE-FUSION WITHIN THE HUMAN-IMMUNODEFICIENCY-VIRUS TYPE-1 GP120 3RD-VARIABLE REGION AND GP41 AMINO TERMINUS [J].
BERGERON, L ;
SULLIVAN, N ;
SODROSKI, J .
JOURNAL OF VIROLOGY, 1992, 66 (04) :2389-2397
[6]   ENVELOPE PROTEINS FROM CLINICAL ISOLATES OF HUMAN-IMMUNODEFICIENCY-VIRUS TYPE-1 THAT ARE REFRACTORY TO NEUTRALIZATION BY SOLUBLE CD4 POSSESS HIGH-AFFINITY FOR THE CD4 RECEPTOR [J].
BRIGHTY, DW ;
ROSENBERG, M ;
CHEN, ISY ;
IVEYHOYLE, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1991, 88 (17) :7802-7805
[7]   An improved PCR-based method for site directed mutagenesis using megaprimers [J].
Brons-Poulsen, J ;
Petersen, NE ;
Horder, M ;
Kristiansen, K .
MOLECULAR AND CELLULAR PROBES, 1998, 12 (06) :345-348
[8]   EFFICIENT NEUTRALIZATION OF PRIMARY ISOLATES OF HIV-1 BY A RECOMBINANT HUMAN MONOCLONAL-ANTIBODY [J].
BURTON, DR ;
PYATI, J ;
KODURI, R ;
SHARP, SJ ;
THORNTON, GB ;
PARREN, PWHI ;
SAWYER, LSW ;
HENDRY, RM ;
DUNLOP, N ;
NARA, PL ;
LAMACCHIA, M ;
GARRATTY, E ;
STIEHM, ER ;
BRYSON, YJ ;
CAO, YZ ;
MOORE, JP ;
HO, DD ;
BARBAS, CF .
SCIENCE, 1994, 266 (5187) :1024-1027
[9]   Replication and neutralization of human immunodeficiency virus type 1 lacking the V1 and V2 variable loops of the gp120 envelope glycoprotein [J].
Cao, J ;
Sullivan, N ;
Desjardin, E ;
Parolin, C ;
Robinson, J ;
Wyatt, R ;
Sodroski, J .
JOURNAL OF VIROLOGY, 1997, 71 (12) :9808-9812
[10]   Core structure of gp41 from the HIV envelope glycoprotein [J].
Chan, DC ;
Fass, D ;
Berger, JM ;
Kim, PS .
CELL, 1997, 89 (02) :263-273