The structural basis of protein folding and its links with human disease

被引:723
作者
Dobson, CM [1 ]
机构
[1] Univ Oxford, Oxford Ctr Mol Sci, New Chem Lab, Oxford OX1 3QT, England
关键词
folding mechanisms; energy landscapes; aggregation; folding diseases; amyloid fibrils; ageing;
D O I
10.1098/rstb.2000.0758
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The ability of proteins to fold to their functional states following synthesis in the intracellular environment is one of the most remarkable features ob biology. Substantial progress has recently been made towards understanding the fundamental nature of the mechanism of the folding process. This understanding has been achieved through the development and concerted application of a variety of novel experimental and theoretical approaches to this complex problem. The emerging view of folding is that it is a stochastic process, but one biased by the fact that native-like interactions between residues are on average more stable than non-native ones. The sequences of natural proteins have emerged through evolutionary processes such that their unique native states can be found very efficiently even in the complex environment inside a living cell. But under some conditions proteins fail to fold correctly, or to remain correctly folded, in living systems, and this failure can result in a wide range of diseases. One group of diseases, known as amyloidoses, which includes Alzheimer's and the transmissible spongiform encephalopathies, involves deposition of aggregated proteins in a variety of tissues. These diseases are particularly intriguing because evidence is accumulating that the formation of the highly organized amyloid aggregates is a generic property of polypeptides, and not simply a feature of the few proteins associated with recognized pathological conditions. That such aggregates are not normally found in properly functional biological systems is again a testament to evolution, in this case of a variety of mechanisms inhibiting their formation. Understanding the nature of such protective mechanisms is a crucial step in the development of strategies to prevent and treat these debilitating diseases.
引用
收藏
页码:133 / 145
页数:13
相关论文
共 65 条
  • [1] PRINCIPLES THAT GOVERN FOLDING OF PROTEIN CHAINS
    ANFINSEN, CB
    [J]. SCIENCE, 1973, 181 (4096) : 223 - 230
  • [2] [Anonymous], 2012, Introduction to protein structure
  • [3] A surprising simplicity to protein folding
    Baker, D
    [J]. NATURE, 2000, 405 (6782) : 39 - 42
  • [4] Instability, unfolding and aggregation of human lysozyme variants underlying amyloid fibrillogenesis
    Booth, DR
    Sunde, M
    Bellotti, V
    Robinson, CV
    Hutchinson, WL
    Fraser, PE
    Hawkins, PN
    Dobson, CM
    Radford, SE
    Blake, CCF
    Pepys, MB
    [J]. NATURE, 1997, 385 (6619) : 787 - 793
  • [5] FUNNELS, PATHWAYS, AND THE ENERGY LANDSCAPE OF PROTEIN-FOLDING - A SYNTHESIS
    BRYNGELSON, JD
    ONUCHIC, JN
    SOCCI, ND
    WOLYNES, PG
    [J]. PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 1995, 21 (03) : 167 - 195
  • [6] Fast events in protein folding: The time evolution of primary processes
    Callender, RH
    Dyer, RB
    Gilmanshin, R
    Woodruff, WH
    [J]. ANNUAL REVIEW OF PHYSICAL CHEMISTRY, 1998, 49 : 173 - 202
  • [7] Mechanistic studies of the folding of human lysozyme and the origin of amyloidogenic behavior in its disease-related variants
    Canet, D
    Sunde, M
    Last, AM
    Miranker, A
    Spencer, A
    Robinson, CV
    Dobson, CM
    [J]. BIOCHEMISTRY, 1999, 38 (20) : 6419 - 6427
  • [8] Ultrastructural organization of amyloid fibrils by atomic force microscopy
    Chamberlain, AK
    MacPhee, CE
    Zurdo, J
    Morozova-Roche, LA
    Hill, HAO
    Dobson, CM
    Davis, JJ
    [J]. BIOPHYSICAL JOURNAL, 2000, 79 (06) : 3282 - 3293
  • [9] Designing conditions for in vitro formation of amyloid protofilaments and fibrils
    Chiti, F
    Webster, P
    Taddei, N
    Clark, A
    Stefani, M
    Ramponi, G
    Dobson, CM
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (07) : 3590 - 3594
  • [10] Chiti F, 1999, NAT STRUCT BIOL, V6, P1005