Utility of siRNA against Keap1 as a strategy to stimulate a cancer chemopreventive phenotype

被引:116
作者
Devling, TWP
Lindsay, CD
McLellan, LI
McMahon, M
Hayes, JD [1 ]
机构
[1] Univ Dundee, Ninewells Hosp & Med Sch, Ctr Biomed Res, Dundee DD1 9SY, Scotland
[2] Def Sci & Technol Lab, Dept Biomed Sci, Salisbury SP4 0JQ, Wilts, England
关键词
antioxidant; chemoprevention; glutathione; nuclear factor erythroid 2 p45-related factor 2; aldo-keto reductase;
D O I
10.1073/pnas.0501475102
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A duplex 21 nucleotide small interfering RNA (siRNA) against human Keap1 is described that represents a unique class of cancer chemopreventive agent. This siRNA can knockdown Keap1 mRNA and thereby relieve negative regulation of nuclear factor erythroid 2 p45-related factor 2 (Nrf2)-mediated gene expression. The siRNA lowered endogenous Keap1 mRNA to < 30% of control levels between 24 and 72 h after transfection in human HaCaT keratin-ocyte cells and was capable of blocking ectopic expression of FLAG-tagged human Keap1 protein but not that of ectopic V5-tagged mouse Keap1 protein. Transfection of human HaCaT cells with Keap1 siRNA markedly enhanced endogenous levels of nuclear factor erythroid 2 p45-related factor 2 (Nrf2) protein and increased transcription of an antioxidant response element-driven reporter gene by 2.3-fold. Furthermore, 48 h after transfection of these cells with Keap1 siRNA, expression of aldo-keto reductase 1C1/2 and the glutamate cysteine ligase catalytic and modifier subunits was elevated between 5- and 14-fold. A modest increase of 3-fold in NAD(P)H:quinone oxidoreductase 1 was also observed. The Keap1 siRNA produced a 1.75-fold increase in intracellular glutathione 48 h after transfection. Thus, antagonism of Keap1 by siRNA can be used to preadapt human cells to oxidative stress without the need to expose them to redox stressors.
引用
收藏
页码:7280 / 7285
页数:6
相关论文
共 50 条
[1]   Phosphorylation of Nrf2 at Ser40 by protein kinase C in response to antioxidants leads to the release of Nrf2 from INrf2, but is not required for Nrf2 stabilization/accumulation in the nucleus and transcriptional activation of antioxidant response element-mediated NAD(P)H:quinone oxidoreductase-1 gene expression [J].
Bloom, DA ;
Jaiswal, AK .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (45) :44675-44682
[2]  
Bonnesen C, 2001, CANCER RES, V61, P6120
[3]  
Burczynski ME, 1999, CANCER RES, V59, P607
[4]   Loss of the Nrf2 transcription factor causes a marked reduction in constitutive and inducible expression of the glutathione S-transferase Gsta1, Gsta2, Gstm1, Gstm2, Gstm3 and Gstm4 genes in the livers of male and female mice [J].
Chanas, SA ;
Jiang, Q ;
McMahon, M ;
McWalter, GK ;
McLellan, LI ;
Elcombe, CR ;
Henderson, CJ ;
Wolf, CR ;
Moffat, GJ ;
Itoh, K ;
Yamamoto, M ;
Hayes, JD .
BIOCHEMICAL JOURNAL, 2002, 365 (02) :405-416
[5]   Nrf2 is a direct PERK substrate and effector of PERK-dependent cell survival [J].
Cullinan, SB ;
Zhang, D ;
Hannink, M ;
Arvisais, E ;
Kaufman, RJ ;
Diehl, JA .
MOLECULAR AND CELLULAR BIOLOGY, 2003, 23 (20) :7198-7209
[6]   The Keap1-BTB protein is an adaptor that bridges Nrf2 to a Cul3-based E3 ligase: Oxidative stress sensing by a Cul3-Keap1 ligase [J].
Cullinan, SB ;
Gordan, JD ;
Jin, JO ;
Harper, JW ;
Diehl, JA .
MOLECULAR AND CELLULAR BIOLOGY, 2004, 24 (19) :8477-8486
[7]  
Dinikova-Kostova AT, 2004, METHOD ENZYMOL, V382, P423
[8]   Direct evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants [J].
Dinkova-Kostova, AT ;
Holtzclaw, WD ;
Cole, RN ;
Itoh, K ;
Wakabayashi, N ;
Katoh, Y ;
Yamamoto, M ;
Talalay, P .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (18) :11908-11913
[9]   siRNAs: Applications in functional genomics and potential as therapeutics [J].
Dorsett, Y ;
Tuschl, T .
NATURE REVIEWS DRUG DISCOVERY, 2004, 3 (04) :318-329
[10]   The modifier subunit of Drosophila glutamate-cysteine ligase regulates catalytic activity by covalent and noncovalent interactions and influences glutathione homeostasis in vivo [J].
Fraser, JA ;
Kansagra, P ;
Kotecki, C ;
Saunders, RDC ;
McLellan, LI .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (47) :46369-46377