Deletion of hexose-6-phosphate dehydrogenase activates the unfolded protein response pathway and induces skeletal myopathy

被引:72
作者
Lavery, Gareth G. [1 ,3 ]
Walker, Elizabeth A. [1 ]
Turan, Nil [2 ]
Rogoff, Daniela [4 ]
Ryder, Jeffery W. [5 ]
Shelton, John M. [3 ]
Richardson, James A. [6 ]
Falciani, Francesco [2 ]
White, Perrin C. [4 ]
Stewart, Paul M. [1 ]
Parker, Keith L. [3 ]
McMillan, Daniel R. [4 ]
机构
[1] Univ Birmingham, Div Med Sci, Birmingham B15 2TH, W Midlands, England
[2] Univ Birmingham, Sch Biosci, Birmingham B15 2TH, W Midlands, England
[3] Univ Texas SW Med Ctr Dallas, Dept Internal Med, Dallas, TX 75390 USA
[4] Univ Texas SW Med Ctr Dallas, Dept Pediat, Dallas, TX 75390 USA
[5] Univ Texas SW Med Ctr Dallas, Dept Physiol, Dallas, TX 75390 USA
[6] Univ Texas SW Med Ctr Dallas, Dept Pathol & Mol Biol, Dallas, TX 75390 USA
基金
英国惠康基金;
关键词
D O I
10.1074/jbc.M710067200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Hexose-6-phosphate dehydrogenase (H6PD) is the initial component of a pentose phosphate pathway inside the endoplasmic reticulum (ER) that generates NADPH for ER enzymes. In liver H6PD is required for the 11-oxoreductase activity of 11 beta-hydroxysteroid dehydrogenase type 1, which converts inactive 11-oxo-glucocorticoids to their active 11-hydroxyl counterparts; consequently, H6PD null mice are relatively insensitive to glucocorticoids, exhibiting fasting hypoglycemia, increased insulin sensitivity despite elevated circulating levels of corticosterone, and increased basal and insulin-stimulated glucose uptake in muscles normally enriched in type II (fast) fibers, which have increased glycogen content. Here, we show that H6PD null mice develop a severe skeletal myopathy characterized by switching of type II to type I (slow) fibers. Running wheel activity and electrically stimulated force generation in isolated skeletal muscle are both markedly reduced. Affected muscles have normal sarcomeric structure at the electron microscopy level but contain large intrafibrillar membranous vacuoles and abnormal triads indicative of defects in structure and function of the sarcoplasmic reticulum (SR). SR proteins involved in calcium metabolism, including the sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCA), calreticulin, and calsequestrin, show dysregulated expression. Microarray analysis and real-time PCR demonstrate overexpression of genes encoding proteins in the unfolded protein response pathway. We propose that the absence of H6PD induces a progressive myopathy by altering the SR redox state, thereby impairing protein folding and activating the unfolded protein response pathway. These studies thus define a novel metabolic pathway that links ER stress to skeletal muscle integrity and function.
引用
收藏
页码:8453 / 8461
页数:9
相关论文
共 49 条
[1]   XBP1 controls diverse cell type- and condition-specific transcriptional regulatory networks [J].
Acosta-Alvear, Diego ;
Zhou, Yiming ;
Blais, Alexandre ;
Tsikitis, Mary ;
Lents, Nathan H. ;
Arias, Carolina ;
Lennon, Christen J. ;
Kluger, Yuval ;
Dynlacht, Brian David .
MOLECULAR CELL, 2007, 27 (01) :53-66
[2]   Demonstration of a metabolically active glucose-B-phosphate pool in the lumen of liver microsomal vesicles [J].
Banhegyi, G ;
Marcolongo, P ;
Fulceri, R ;
Hinds, C ;
Burchell, A ;
Benedetti, A .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (21) :13584-13590
[3]   Signaling pathways in skeletal muscle remodeling [J].
Bassel-Duby, Rhonda ;
Olson, Eric N. .
ANNUAL REVIEW OF BIOCHEMISTRY, 2006, 75 :19-37
[4]   Intracellular signaling by the unfolded protein response [J].
Bernales, Sebastian ;
Papa, Feroz R. ;
Walter, Peter .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 2006, 22 :487-508
[5]   Hexose-6-phosphate dehydrogenase confers oxo-reductase activity upon 11β-hydroxysterold dehydrogenase type 1 [J].
Bujalska, IJ ;
Draper, N ;
Michailidou, Z ;
Tomlinson, JW ;
White, PC ;
Chapman, KE ;
Walker, EA ;
Stewart, PM .
JOURNAL OF MOLECULAR ENDOCRINOLOGY, 2005, 34 (03) :675-684
[6]   A small molecular activator of cardiac hypertrophy uncovered in a chemical screen for modifiers of the calcineurin signaling pathway [J].
Bush, E ;
Fielitz, J ;
Melvin, L ;
Martinez-Arnold, M ;
McKinsey, TA ;
Plichta, R ;
Olson, EN .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (09) :2870-2875
[7]   A network-based analysis of systemic inflammation in humans [J].
Calvano, SE ;
Xiao, WZ ;
Richards, DR ;
Felciano, RM ;
Baker, HV ;
Cho, RJ ;
Chen, RO ;
Brownstein, BH ;
Cobb, JP ;
Tschoeke, SK ;
Miller-Graziano, C ;
Moldawer, LL ;
Mindrinos, MN ;
Davis, RW ;
Tompkins, RG ;
Lowry, SF .
NATURE, 2005, 437 (7061) :1032-1037
[8]   A calcineurin-dependent transcriptional pathway controls skeletal muscle fiber type [J].
Chin, ER ;
Olson, EN ;
Richardson, JA ;
Yano, Q ;
Humphries, C ;
Shelton, JM ;
Wu, H ;
Zhu, WG ;
Bassel-Duby, R ;
Williams, RS .
GENES & DEVELOPMENT, 1998, 12 (16) :2499-2509
[9]   Proopiomelanocortin-deficient mice are hypersensitive to the adverse metabolic effects of glucocorticoids [J].
Coll, AP ;
Challis, BG ;
López, M ;
Piper, S ;
Yeo, GSH ;
O'Rahilly, S .
DIABETES, 2005, 54 (08) :2269-2276
[10]   Peroxisome proliferator-activated receptor γ coactivator 1 in caloric restriction and other models of longevity [J].
Corton, JC ;
Brown-Borg, HM .
JOURNALS OF GERONTOLOGY SERIES A-BIOLOGICAL SCIENCES AND MEDICAL SCIENCES, 2005, 60 (12) :1494-1509