Metal Hydride and Ligand Proton Transfer Mechanism for the Hydrogenation of Dimethyl Carbonate to Methanol Catalyzed by a Pincer Ruthenium Complex

被引:57
作者
Yang, Xinzheng [1 ]
机构
[1] Univ Calif Berkeley, Coll Chem, Mol Graph & Computat Facil, Berkeley, CA 94720 USA
来源
ACS CATALYSIS | 2012年 / 2卷 / 06期
基金
美国国家科学基金会;
关键词
hydrogenation; dimethyl carbonate; methyl formate; formaldehyde; methanol; ruthenium; iron; pincer ligand; homogeneous catalysis; catalytic mechanism; density functional theory; MOLECULAR-ORBITAL METHODS; DENSITY-FUNCTIONAL THEORY; HOMOGENEOUS HYDROGENATION; BASIS-SETS; DIOXIDE; IRON; CO2; STORAGE; RU;
D O I
10.1021/cs3000683
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The hydrogenation of dimethyl carbonate to methanol catalyzed by a PNN-ligated ruthenium complex (PNN)Ru(CO)(H) was studied computationally using the density functional theory at the range-separated and dispersion-corrected omega B97X-D functional level in conjunction with an all-electron 6-31++G(d,p) basis set (Stuttgart ECP28MWB basis set for Ru). A direct metal hydride and ligand proton transfer mechanism with three cascade catalytic cycles for the hydrogenation of dimethyl carbonate, methyl formate, and formaldehyde to methanol is proposed. The resting state in the catalytic reaction is the trans dihydride complex trans-(PNN)Ru(H)(2)(CO). Calculation results indicate that the rate-determining step in the whole reaction is the formation of the second methanol molecule through simultaneous breaking of a C-OCH3 bond and transferring a ligand methylene proton to the dissociated CH3O- in the catalytic cycle for hydrogenation of methyl formate. The essential role of the noninnocent PNN pincer ligand is to split H-2 and assist methanol formation through the aromatization and dearomatization of the pyridine ring in the ligand. A new iron pincer complex, trans-(PNN)Fe(H)(2)(CO), is proposed and evaluated as a promising low-cost and high efficiency catalyst for this reaction.
引用
收藏
页码:964 / 970
页数:7
相关论文
共 33 条
[1]   ENERGY-ADJUSTED ABINITIO PSEUDOPOTENTIALS FOR THE 2ND AND 3RD ROW TRANSITION-ELEMENTS [J].
ANDRAE, D ;
HAUSSERMANN, U ;
DOLG, M ;
STOLL, H ;
PREUSS, H .
THEORETICA CHIMICA ACTA, 1990, 77 (02) :123-141
[2]   Hydrogen Storage and Energy Recovery Using Aldehydes and Ketones: A Key Role for Catalysis [J].
Angelici, Robert J. .
ACS CATALYSIS, 2011, 1 (07) :772-776
[3]  
Aresta M., 2010, CARBON DIOXIDE CHEM
[4]  
Bakac A., 2010, PHYS INORGANIC CHEM, P247
[5]  
Balaraman E, 2011, NAT CHEM, V3, P609, DOI [10.1038/NCHEM.1089, 10.1038/nchem.1089]
[6]   Efficient Dehydrogenation of Formic Acid Using an Iron Catalyst [J].
Boddien, Albert ;
Mellmann, Doerthe ;
Gaertner, Felix ;
Jackstell, Ralf ;
Junge, Henrik ;
Dyson, Paul J. ;
Laurenczy, Gabor ;
Ludwig, Ralf ;
Beller, Matthias .
SCIENCE, 2011, 333 (6050) :1733-1736
[7]   Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections [J].
Chai, Jeng-Da ;
Head-Gordon, Martin .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2008, 10 (44) :6615-6620
[8]   The Mechanism of Alkene Addition to a Nickel Bis(dithiolene) Complex: The Role of the Reduced Metal Complex [J].
Dang, Li ;
Shibl, Mohamed F. ;
Yang, Xinzheng ;
Alak, Aiman ;
Harrison, Daniel J. ;
Fekl, Ulrich ;
Brothers, Edward N. ;
Hall, Michael B. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (10) :4481-4484
[9]   Computational Studies on Ethylene Addition to Nickel Bis(dithiolene) [J].
Dang, Li ;
Yang, Xinzheng ;
Zhou, Jia ;
Brothers, Edward N. ;
Hall, Michael B. .
JOURNAL OF PHYSICAL CHEMISTRY A, 2012, 116 (01) :476-482
[10]   BIFUNCTIONAL CATALYSIS A bridge from CO2 to methanol [J].
Dixneuf, Pierre H. .
NATURE CHEMISTRY, 2011, 3 (08) :578-579