Generalized Elitzur's theorem and dimensional reductions

被引:108
作者
Batista, CD [1 ]
Nussinov, Z
机构
[1] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[2] Washington Univ, Dept Phys, St Louis, MO 63160 USA
关键词
D O I
10.1103/PhysRevB.72.045137
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We extend Elitzur's theorem to systems with symmetries intermediate between global and local. In general, our theorem formalizes the idea of dimensional reduction. We apply the results of this generalization to many systems that are of current interest. These include liquid crystalline phases of quantum Hall systems, orbital systems, geometrically frustrated spin lattices, Bose metals, and models of superconducting arrays.
引用
收藏
页数:10
相关论文
共 55 条
[1]  
Auerbach A., 1994, INTERACTING ELECT QU
[2]   Exact ground states of a frustrated 2D magnet: Deconfined fractional excitations at a first-order quantum phase transition [J].
Batista, CD ;
Trugman, SA .
PHYSICAL REVIEW LETTERS, 2004, 93 (21) :217202-1
[3]   Algebraic approach to interacting quantum systems [J].
Batista, CD ;
Ortiz, G .
ADVANCES IN PHYSICS, 2004, 53 (01) :1-82
[4]  
BATISTA CD, UNPUB
[5]   Singlet excitations in pyrochlore: A study of quantum frustration [J].
Berg, E ;
Altman, E ;
Auerbach, A .
PHYSICAL REVIEW LETTERS, 2003, 90 (14)
[6]  
BISKUP M, CONDMAT0309691
[7]  
Brazovskii S. A., 1975, SOV PHYS JETP, V41, DOI DOI 10.1142/9789814317344_0016
[8]  
BUDNIK R, CONDMAT0406651
[9]   Avoided critical behavior in a uniformly frustrated system [J].
Chayes, L ;
Emery, VJ ;
Kivelson, SA ;
Nussinov, Z ;
Tarjus, G .
PHYSICA A, 1996, 225 (01) :129-153
[10]  
EDWARDS SF, 1979, J PHYS F MET PHYS, V5, P89