Activation of the unfolded protein response is necessary and sufficient for reducing topoisomerase IIα protein levels and decreasing sensitivity to topoisomerase-targeted drugs

被引:37
作者
Gray, MD
Mann, M
Nitiss, JL
Hendershot, LM
机构
[1] St Jude Childrens Res Hosp, Dept Mol Pharmacol, Memphis, TN 38105 USA
[2] St Jude Childrens Res Hosp, Dept Genet & Tumor Cell Biol, Memphis, TN 38105 USA
关键词
D O I
10.1124/mol.105.014753
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
A wide range of chemotherapeutic agents has been identified that are active against solid tumors. However, resistance remains an important obstacle to the development of curative regimens. Whereas much attention has been paid to acquired drug resistance, a variety of physiological pathways also have been described that reduce the sensitivity of previously untreated tumors to cytotoxic antitumor agents. Treatment of cells with pharmacological agents that alter the environment of the endoplasmic reticulum (ER) and activate the unfolded protein response (UPR) can render cells resistant to topoisomerase II poisons. We describe experiments showing that activation of the mammalian ER stress response is both necessary and sufficient to decrease topoisomerase II alpha protein levels and to render cells resistant to etoposide, a topoisomerase II-targeting drug. This is not caused by the elevated levels of BiP that are a hallmark of this response, because a cell line that has been engineered to overexpress BiP does not show increased resistance to etoposide. The UPR was shown to be required for altered drug sensitivity, because the BiP-overexpressing cell line, which is unable to activate the UPR, did not show decreased topoisomerase II levels or increased resistance to etoposide in response to stress conditions. The transient overexpression of an unfolded protein activated the UPR and led to the concomitant loss of topoisomerase II alpha protein from the cells, demonstrating that UPR activation is sufficient for the changes in topoisomerase II levels that had been observed previously with pharmacological induction of the UPR.
引用
收藏
页码:1699 / 1707
页数:9
相关论文
共 64 条
[1]   Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response [J].
Bertolotti, A ;
Zhang, YH ;
Hendershot, LM ;
Harding, HP ;
Ron, D .
NATURE CELL BIOLOGY, 2000, 2 (06) :326-332
[2]   POSTTRANSLATIONAL ASSOCIATION OF IMMUNOGLOBULIN HEAVY-CHAIN BINDING-PROTEIN WITH NASCENT HEAVY-CHAINS IN NONSECRETING AND SECRETING HYBRIDOMAS [J].
BOLE, DG ;
HENDERSHOT, LM ;
KEARNEY, JF .
JOURNAL OF CELL BIOLOGY, 1986, 102 (05) :1558-1566
[3]   PERK mediates cell-cycle exit during the mammalian unfolded protein response [J].
Brewer, JW ;
Diehl, JA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (23) :12625-12630
[4]   A pathway distinct from the mammalian unfolded protein response regulates expression of endoplasmic reticulum chaperones in non-stressed cells [J].
Brewer, JW ;
Cleveland, JL ;
Hendershot, LM .
EMBO JOURNAL, 1997, 16 (23) :7207-7216
[5]   Mammalian unfolded protein response inhibits cyclin D1 translation and cell-cycle progression [J].
Brewer, JW ;
Hendershot, LM ;
Sherr, CJ ;
Diehl, JA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (15) :8505-8510
[6]   Inhibition of translational initiation by activators of the glucose-regulated stress protein and heat shock protein stress response systems - Role of the interferon-inducible double-stranded RNA-activated eukaryotic initiation factor 2 alpha kinase [J].
Brostrom, CO ;
Prostko, CR ;
Kaufmann, RJ ;
Brostrom, MA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (40) :24995-25002
[7]   IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA [J].
Calfon, M ;
Zeng, HQ ;
Urano, F ;
Till, JH ;
Hubbard, SR ;
Harding, HP ;
Clark, SG ;
Ron, D .
NATURE, 2002, 415 (6867) :92-96
[8]   PROTEIN THIOLATION AND REVERSIBLE PROTEIN-PROTEIN CONJUGATION - N-SUCCINIMIDYL 3-(2-PYRIDYLDITHIO)PROPIONATE, A NEW HETEROBIFUNCTIONAL REAGENT [J].
CARLSSON, J ;
DREVIN, H ;
AXEN, R .
BIOCHEMICAL JOURNAL, 1978, 173 (03) :723-737
[9]  
Chatterjee S, 1997, CANCER RES, V57, P5112
[10]   DNA TOPOISOMERASES - ESSENTIAL ENZYMES AND LETHAL TARGETS [J].
CHEN, AY ;
LIU, LF .
ANNUAL REVIEW OF PHARMACOLOGY AND TOXICOLOGY, 1994, 34 :191-218