Fluid-structure partitioned procedures based on Robin transmission conditions

被引:207
作者
Badia, Santiago [1 ]
Nobile, Fabio [2 ]
Vergara, Christian [2 ,3 ]
机构
[1] Univ Politecn Cataluna, CIMNE, ES-08034 Barcelona, Spain
[2] Politecn Milan, MOX, Dipartimento Matemat F Brioschi, I-20133 Milan, Italy
[3] Univ Bergamo, Dept Informat Technol & Math Methods, I-24044 Dalmine, BG, Italy
关键词
fluid-structure interaction; partitioned procedures; transmission conditions; Robin boundary conditions; added-mass effect; hemodynamics;
D O I
10.1016/j.jcp.2008.04.006
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this article we design new partitioned procedures for fluid-structure interaction problems, based on Robin-type transmission conditions. The choice of the coefficient in the Robin conditions is justified via simplified models. The strategy is effective whenever an incompressible fluid interacts with a relatively thin membrane, as in hemodynamics applications. We analyze theoretically the new iterative procedures on a model problem, which represents a simplified blood-vessel system. In particular, the Robin-Neumann scheme exhibits enhanced convergence properties with respect to the existing partitioned procedures. The theoretical results are checked using numerical experimentation. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:7027 / 7051
页数:25
相关论文
共 20 条
[1]  
[Anonymous], 2000, EUR J COMPUT MECH
[2]  
[Anonymous], 2001, First MIT Conference on Computational Fluid and Solid Mechanics, DOI [10.1016/b978-008043944-0/50907-0, DOI 10.1016/B978-008043944-0/50907-0]
[3]  
[Anonymous], 2004, THESIS ECOLE POLYTEC
[4]   Splitting methods based on algebraic factorization for fluid-structure interaction [J].
Badia, Santiago ;
Quaini, Annalisa ;
Quarteroni, Alfio .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2008, 30 (04) :1778-1805
[5]   FINITE-ELEMENT ANALYSIS OF INCOMPRESSIBLE AND COMPRESSIBLE FLUID-FLOWS WITH FREE SURFACES AND STRUCTURAL INTERACTIONS [J].
BATHE, KJ ;
ZHANG, H ;
WANG, MH .
COMPUTERS & STRUCTURES, 1995, 56 (2-3) :193-213
[6]   Added-mass effect in the design of partitioned algorithms for fluid-structure problems [J].
Causin, P ;
Gerbeau, JF ;
Nobile, F .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2005, 194 (42-44) :4506-4527
[7]   Fluid-structure algorithms based on Steklov-Poincare operators [J].
Deparis, Simone ;
Discacciati, Marco ;
Fourestey, Gilles ;
Quarteroni, Alfio .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2006, 195 (41-43) :5797-5812
[8]   AN ARBITRARY LAGRANGIAN-EULERIAN FINITE-ELEMENT METHOD FOR TRANSIENT DYNAMIC FLUID STRUCTURE INTERACTIONS [J].
DONEA, J ;
GUILIANI, S ;
HALLEUX, JP .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1982, 33 (1-3) :689-723
[9]   A projection semi-implicit scheme for the coupling of an elastic structure with an incompressible fluid [J].
Fernandez, M. A. ;
Gerbeau, J. -F. ;
Grandmont, C. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2007, 69 (04) :794-821
[10]   A Newton method using exact jacobians for solving fluid-structure coupling [J].
Fernández, MA ;
Moubachir, M .
COMPUTERS & STRUCTURES, 2005, 83 (2-3) :127-142